Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (12): 2307-2314    DOI: 10.3785/j.issn.1008-973X.2021.12.010
机械工程     
任意卷吸速度矢量点接触摩擦系数简化计算方法
曹伟1,2(),蒲伟3,万一品1,王迪1,*(),刘存波2
1. 长安大学 工程机械学院,陕西 西安 710064
2. 山推工程机械股份有限公司,山东 济宁 272073
3. 四川大学 空天科学与工程学院,四川 成都 610065
Simplified calculation method for friction coefficient in point contact with arbitrary entrainment vector
Wei CAO1,2(),Wei PU3,Yi-pin WAN1,Di WANG1,*(),Cun-bo LIU2
1. School of Construction Machinery, Chang’an University, Xi’an 710064, China
2. Shantui Construction Machinery Limited Company, Ji’ning 272073, China
3. School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
 全文: PDF(1548 KB)   HTML
摘要:

针对弧齿锥齿轮和准双曲面齿轮传动的空间点接触摩擦系数求解复杂问题,考虑油膜入口区温升与中心油膜厚度以及接触区温升与摩擦系数间的耦合关系,提出任意卷吸速度矢量点接触的摩擦系数简化计算方法. 基于所提方法分析在不同工况下的点接触中心油膜厚度和摩擦系数,并将油膜厚度和摩擦系数与文献实验数据进行对比. 结果表明:在高速工况下,入口区温升和接触区温升显著,忽略温升影响将使油膜厚度和摩擦系数预测结果偏大;卷吸速度夹角对油膜厚度影响较大,对摩擦系数影响相对较小;在任意卷吸速度夹角工况下,点接触油膜厚度和摩擦系数预测结果与文献实验结果一致,验证摩擦系数简化计算方法的可靠性.

关键词: 摩擦系数油膜厚度点接触卷吸速度矢量简化方法    
Abstract:

Owing to the complexity of friction coefficient calculations in spatial point contact, such as spiral bevel gear and hypoid gear transmissions, a simplified calculation method for friction coefficient in point contact with arbitrary entrainment vector was proposed, considering the coupling between inlet temperature rise and center film thickness as well as the interaction between friction coefficient and temperature rise in contact zone. Based on the proposed method, the oil film thickness and friction coefficient of point contact were analyzed under different working conditions, and the oil film thickness and friction coefficient were compared with the experimental data in literatures. Results show that the temperature rise at inlet area and contact area is significant at high speed, hence the prediction results of oil film thickness and friction coefficient are large if the influence of temperature rises are ignored. The entrainment angle has great influence on the oil film thickness, but little effect on the friction coefficient. Under arbitrary entrainment angles, the predicted oil film thickness and friction coefficient for point contact agree well with experimental results from literatures, verifying the reliability of the simplified calculation method for friction coefficient.

Key words: friction coefficient    oil film thickness    point contact    entrainment vector    simplified method
收稿日期: 2021-01-25 出版日期: 2021-12-31
CLC:  TH 117.2  
基金资助: 国家自然科学基金资助项目(52005047);中国博士后科学基金资助项目(2020M672129);陕西省自然科学基础研究计划资助项目(2020JQ-367, 2020JQ-345);中央高校基本科研业务费专项资助项目(300102250301);陕西省高校科协青年人才托举计划资助项目(20210420)
通讯作者: 王迪     E-mail: cw334926@163.com;wangdi@chd.edu.cn
作者简介: 曹伟(1992—),男,讲师,博士,从事传动系统摩擦学研究. orcid.org/0000-0002-6826-0672. E-mail: cw334926@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
曹伟
蒲伟
万一品
王迪
刘存波

引用本文:

曹伟,蒲伟,万一品,王迪,刘存波. 任意卷吸速度矢量点接触摩擦系数简化计算方法[J]. 浙江大学学报(工学版), 2021, 55(12): 2307-2314.

Wei CAO,Wei PU,Yi-pin WAN,Di WANG,Cun-bo LIU. Simplified calculation method for friction coefficient in point contact with arbitrary entrainment vector. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2307-2314.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.12.010        https://www.zjujournals.com/eng/CN/Y2021/V55/I12/2307

图 1  具有卷吸速度夹角的点接触
图 2  流体剪切力求解坐标及网格
图 3  入口区压力梯度近似计算
图 4  摩擦系数简化计算方法流程
图 5  不同热影响因素下中心油膜厚度随卷吸速度的变化
图 6  不同温度下入口区油膜温升随卷吸速度的变化
图 7  不同热影响因素下摩擦系数随滑滚比的变化
图 8  不同温度下摩擦系数随滑滚比的变化
图 9  不同热影响因素下中心油膜厚度随卷吸夹角的变化
计算方法 hc/nm
θe= 0° θe= 45° θe= 90°
文献[11] 495.3 440.0 375.3
文献[33] 457.0 419.0 393.0
文献[13] 457.0 415.0 357.8
本研究 461.5 429.9 383.2
表 1  不同计算方法中卷吸速度夹角对应的中心油膜厚度
图 10  不同热影响因素下摩擦系数、入口区油膜温升和接触区最大温升随卷吸速度的变化
图 11  不同卷吸速度夹角下摩擦系数与实验结果对比
图 12  不同工况下摩擦系数随卷吸夹角的变化
1 蒲伟, 王家序, 朱东, 等 卷吸速度为任意方向的椭圆接触弹流润滑复合迭代解法[J]. 机械工程学报, 2014, 50 (13): 106- 112
PU Wei, WANG Jia-xu, ZHU Dong, et al Semi-system approach in elastohydrodynamic lubrication of elliptical contacts with arbitrary entrainment[J]. Journal of Mechanical Engineering, 2014, 50 (13): 106- 112
2 王家序, 胡如康, 周广武, 等 双圆弧谐波减速器共轭啮合区混合润滑分析[J]. 哈尔滨工业大学学报, 2018, 50 (7): 169- 178
ANG Jia-xu, HU Ru-kuang, ZHOU Guang-wu, et al Analysis on mixed lubrication at the conjugate meshing domain of harmonic gear with double-circular-arc tooth profile[J]. Journal of Harbin Institute of Technology, 2018, 50 (7): 169- 178
doi: 10.11918/j.issn.0367-6234.201709160
3 刘奕壕, 黄柏林, 付忠学, 等 基于Circular模型的大剪应变率点接触弹流界面滑移数值分析[J]. 摩擦学学报, 2018, 38 (2): 129- 137
LIU Yi-hao, HUANG Bo-lin, FU Zhong-xue, et al Numerical analysis of EHL boundary slip effect applying circular model under big shear strain rate[J]. Tribology, 2018, 38 (2): 129- 137
4 WANG H, ZHOU C, LEI Y, et al An adhesive wear model for helical gears in line-contact mixed elastohydrodynamic lubrication[J]. Wear, 2019, 426-427: 896- 909
doi: 10.1016/j.wear.2019.01.104
5 ZAPLETAL T, SPERKA P, KRUPKA I, et al The effect of surface roughness on friction and film thickness in transition from EHL to mixed lubrication[J]. Tribology International, 2018, 128: 356- 364
doi: 10.1016/j.triboint.2018.07.047
6 MASJEDI M, KHONSARI M M Film thickness and asperity load formulas for line-contact elastohydrodynamic lubrication with provision for surface roughness[J]. Journal of Tribology, 2012, 134 (1): 011503
doi: 10.1115/1.4005514
7 MASJEDI M, KHONSARI M M On the effect of surface roughness in point-contact EHL: formulas for film thickness and asperity load[J]. Tribology International, 2015, 82: 228- 244
doi: 10.1016/j.triboint.2014.09.010
8 MASJEDI M, KHONSARI M M Mixed elastohydrodynamic lubrication line-contact formulas with different surface patterns[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2014, 228 (8): 849- 859
doi: 10.1177/1350650114534228
9 MASJEDI M, KHONSARI M M An engineering approach for rapid evaluation of traction coefficient and wear in mixed EHL[J]. Tribology International, 2015, 92: 184- 190
doi: 10.1016/j.triboint.2015.05.013
10 JALALI-VAHID D, RAHNEJAT H, GOHAR R, et al Prediction of oil-film thickness and shape in elliptical point contacts under combined rolling and sliding motion[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2000, 214 (5): 427- 437
doi: 10.1243/1350650001543304
11 WANG J, QU S, YANG P Simplified multigrid technique for the numerical solution to the steady-state and transient EHL line contacts and the arbitrary entrainment EHL point contacts[J]. Tribology International, 2001, 34 (3): 191- 202
doi: 10.1016/S0301-679X(01)00020-2
12 STAHL K, MICHAELIS K, MAYER J, et al Theoretical and experimental investigations on EHL point contacts with different entrainment velocity directions[J]. Tribology Transactions, 2013, 56 (5): 728- 738
doi: 10.1080/10402004.2013.785624
13 PU W, WANG J, ZHANG Y, et al A theoretical analysis of the mixed elastohydrodynamic lubrication in elliptical contacts with an arbitrary entrainment angle[J]. Journal of Tribology, 2014, 136 (4): 041505
doi: 10.1115/1.4028126
14 蒲伟, 王家序, 杨荣松, 等 重载下准双曲面齿轮传动界面润滑机理分析[J]. 西安交通大学学报, 2015, 49 (11): 55- 61
PU Wei, WANG Jia-xu, YANG Rong-song, et al Analysis on lubrication performance of hypoid gears at heavy loads[J]. Journal of Xi'an Jiaotong University, 2015, 49 (11): 55- 61
15 CAO W, PU W, WANG J, et al Effect of contact path on the mixed lubrication performance, friction and contact fatigue in spiral bevel gears[J]. Tribology International, 2018, 123: 359- 371
doi: 10.1016/j.triboint.2018.03.015
16 KOLIVAND M, LI S, KAHRAMAN A Prediction of mechanical gear mesh efficiency of hypoid gear pairs[J]. Mechanism and Machine Theory, 2010, 45 (11): 1568- 1582
doi: 10.1016/j.mechmachtheory.2010.06.015
17 SIMON V V Improvements in the mixed elastohydrodynamic lubrication and in the efficiency of hypoid gears[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2020, 234 (6): 795- 810
doi: 10.1177/1350650119866027
18 XU H, KAHRAMAN A Prediction of friction-related power losses of hypoid gear pairs[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2007, 221 (3): 387- 400
doi: 10.1243/14644193JMBD48
19 李飞, 袁茹, 朱慧玲, 等 计及齿面摩擦的弧齿锥齿轮动态特性[J]. 航空动力学报, 2020, 35 (8): 1687- 1694
LI Fei, YUAN Ru, ZHU Hui-ling, et al Dynamic characteristics of spiral bevel gear considering tooth surface friction[J]. Journal of Aerospace Power, 2020, 35 (8): 1687- 1694
20 PU W, WANG J, ZHU D Friction and flash temperature prediction of mixed lubrication in elliptical contacts with arbitrary velocity vector[J]. Tribology International, 2016, 99: 38- 46
doi: 10.1016/j.triboint.2016.03.017
21 ZHU D. Thermal effect on EHL film thickness [M]. [S.l.]: Springer US, 2013: 3602-3606.
22 曹伟, 蒲伟, 王家序, 等. 弧齿锥齿轮摩擦系数与啮合效率研究[J]. 摩擦学学报, 2018, 38(3): 247-255.
CAO Wei, PU Wei, WANG Jia-xu, et al. Friction coefficient and mesh efficiency in spiral bevel gears [J], Tribology, 2018, 38(3): 247-255.
23 CHITTENDEN R J, DOWSON D, DUNN J F, et al A theoretical analysis of the isothermal elastohydrodynamic lubrication of concentrated contacts. II. General case, with lubricant entrainment along either principal axis of the Hertzian contact ellipse or at some intermediate angle[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1985, 397 (1813): 271- 294
doi: 10.1098/rspa.1985.0015
24 BAIR S, WINER W O A rheological model for elastohydrodynamic contacts based on primary laboratory data[J]. Journal of Tribology, 1979, 101 (3): 258- 264
25 ZHU D, HU Y Z A computer program package for the prediction of EHL and mixed lubrication characteristics, friction, subsurface stresses and flash temperatures based on measured 3-D surface roughness[J]. ASLE Transactions, 2001, 44 (3): 383- 390
26 HOUPERT L Fast numerical calculations of EHD sliding traction forces; application to rolling bearings[J]. Journal of Tribology, 1985, 107 (2): 234- 239
doi: 10.1115/1.3261030
27 JOHNSON K L, TEVAARWERK J L Shear behaviour of elastohydrodynamic oil films[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1977, 356 (1685): 215- 236
doi: 10.1098/rspa.1977.0129
28 CASTRO J, SEABRA J Global and local analysis of gear scuffing tests using a mixed film lubrication model[J]. Tribology International, 2008, 41 (4): 244- 255
doi: 10.1016/j.triboint.2007.07.005
29 GREENWOOD J A, KAUZLARICH J J Inlet shear heating in elastohydrodynamic lubrication[J]. Journal of Lubrication Technology, 1973, 95 (11): 287- 362
30 PAOURIS L, RAHMANI R, THEODOSSIADES S, et al An analytical approach for prediction of elastohydrodynamic friction with inlet shear heating and starvation[J]. Tribology Letters, 2016, 64: 10
doi: 10.1007/s11249-016-0730-7
31 GUPTA P K, CHENG H S, ZHU D, et al Viscoelastic effects in MIL-L-7808-type lubricant, part I: analytical formulation[J]. Tribology Transactions, 1992, 35 (2): 269- 274
doi: 10.1080/10402009208982117
32 KATYAL P, KUMAR P Effect of arbitrary entrainment angle in elastohydrodynamic lubrication elliptical and circular contacts[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2020, 234 (3): 424- 434
doi: 10.1177/1350650119863998
33 PU W, WANG J, ZHOU G, et al Effect of surface topography associated with arbitrary velocity direction on the lubrication film thickness in elliptical contacts[J]. Industrial Lubrication and Tribology, 2018, 70 (2): 444- 452
doi: 10.1108/ILT-09-2016-0206
[1] 戴显荣,王路,王昌将,王晓阳,沈锐利. 多塔悬索桥全竖向摩擦板式抗滑方案[J]. 浙江大学学报(工学版), 2019, 53(9): 1697-1703.
[2] 陈德, 韩森, 苏谦, 韩霄. 基于抗滑降噪性能的沥青路面表面构造评价指标[J]. 浙江大学学报(工学版), 2017, 51(5): 896-903.
[3] 王彬, 周华, 杨华勇. 轴向柱塞泵平面配流副的摩擦转矩特性试验研究[J]. J4, 2009, 43(11): 2091-2095.