Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (8): 1453-1463    DOI: 10.3785/j.issn.1008-973X.2021.08.006
土木工程、交通工程     
侧向土体影响下盾构隧道引起上覆管线变形
冯国辉1(),徐长节1,2,3,*(),郑茗旺1,薛齐4,杨开放1,管凌霄2,3
1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058
2. 华东交通大学 江西省岩土工程基础设施安全与控制重点实验室,江西 南昌 330013
3. 江西省地下空间技术开发工程研究中心,江西 南昌 330013
4. 浙江杭海城际铁路有限公司,浙江 嘉兴 314000
Deflection of overlying pipeline induced by shield tunneling considering effect of lateral soil
Guo-hui FENG1(),Chang-jie XU1,2,3,*(),Ming-Wang TEY1,Qi XUE4,Kai-fang YANG1,Ling-xiao Guan2,3
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Jiangxi Key Laboratory of Infrastructure Safety Control in Geotechnical Engineering, East China Jiaotong University, Nanchang 330013, China
3. Engineering Research and Development Centre for Underground Technology of Jiangxi Province, Nanchang 330013, China
4. Zhejiang Hanghai Intercity Railway Co. Ltd, Jiaxing 314000, China
 全文: PDF(1548 KB)   HTML
摘要:

目前盾构隧道开挖对邻近管线影响的理论研究一般基于Winkler地基模型和Pasternak地基模型,较少考虑精度更高的Kerr地基模型及管线侧向土体影响对管线变形的约束作用. 将管线简化成Euler-Bernoulli梁搁置在Kerr地基模型上,利用差分法得到盾构隧道引起上覆管线竖向位移半解析解,在此基础上进一步推导考虑管线侧向土体影响的Kerr地基模型差分解. 通过与已有工程案例和离心机数据对比,验证Kerr地基模型相比于其他地基模型的优越性,也验证了考虑管线侧向土体影响的Kerr地基模型计算结果更加符合实测数据. 参数分析表明, 随着隧道开挖地层损失率和土体弹性模量的增大,管线的竖向位移和弯矩均增大;随着管线与隧道夹角的增大,管线的竖向位移和弯矩均减小.

关键词: 盾构开挖Kerr地基模型侧向土体影响管线变形有限差分法    
Abstract:

Studies on pipeline deformation caused by adjacent tunneling are generally based on Winkler foundation model and Pasternak foundation model, and few studies consider Kerr foundation model or the constraint effects of lateral soils beside pipeline. The pipeline was simplified as Euler-Bernoulli beam on the Kerr foundation model, an semi-analytical solution of vertical deformation of pipeline caused by underlying tunneling can be calculated by using the finite difference method, and another difference solution deformation of pipeline considering lateral soils beside pipeline was deduced. Through comparing with the case study on engineering practical and centrifugal results, it was verified that the Kerr foundation model has more advantages, and the calculated result of Kerr foundation model considering effects of lateral soils beside pipeline was close to the result of measured data. Results of parameter analysis show that, with the increase of volume loss ratio and soil elastic modulus, vertical displacement and moment of the pipeline increases. The vertical displacement and moment of the pipeline decrease with the cross angle between pipeline and tunnel increases.

Key words: tunneling    Kerr foundation model    effect of lateral soil    pipeline displacement    finite difference method
收稿日期: 2020-08-11 出版日期: 2021-09-01
CLC:  TU 91  
基金资助: 国家自然科学基金-高铁联合基金资助项目(U1934208);国家杰出青年科学基金资助项目(51725802);浙江省自然科学基金委员会-华东院联合基金资助项目(LHZ19E080001);国家自然科学基金资助项目(51878276)
通讯作者: 徐长节     E-mail: ghfeng@zju.edu.cn;xucj@zju.edu.cn
作者简介: 冯国辉(1996—),男,博士生,从事土与结构相互作用研究. orcid.org/0000-0003-3315-4631. E-mail: ghfeng@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
冯国辉
徐长节
郑茗旺
薛齐
杨开放
管凌霄

引用本文:

冯国辉,徐长节,郑茗旺,薛齐,杨开放,管凌霄. 侧向土体影响下盾构隧道引起上覆管线变形[J]. 浙江大学学报(工学版), 2021, 55(8): 1453-1463.

Guo-hui FENG,Chang-jie XU,Ming-Wang TEY,Qi XUE,Kai-fang YANG,Ling-xiao Guan. Deflection of overlying pipeline induced by shield tunneling considering effect of lateral soil. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1453-1463.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.08.006        https://www.zjujournals.com/eng/CN/Y2021/V55/I8/1453

图 1  盾构隧道开挖对已有管线影响的简化模型
图 2  管线与隧道相交示意图
图 3  Kerr地基下管土相互作用模型图
图 4  管线-侧向土体相互作用
图 5  本研究方法解析结果与有限元结果对比图
R/m H/m z/m ε0/% ES/MPa v D/m EI/(kN·m2)
3.0 14.4 8.7 0.84 8.2 0.3 3.0 5.87×107
表 1  深圳地铁工程实例计算参数
图 6  管线位移计算及实测数据对比
R/m H/m z/m ε0/% ES/MPa v D/m EI/(kN·m2)
2.25 11.25 4.165 2 19.52 0.23 1.19 3.363×106
表 2  离心机试验参数
图 7  管线位移计算及离心机数据对比曲线
图 8  不同地层损失率下管线竖向位移
图 9  不同地层损失率下管线弯矩
图 10  不同土体弹性模型下管线竖向位移
图 11  不同土体弹性模型下管线弯矩
图 12  不同相交角度下管线竖向位移
图 13  不同相交角度下管线弯矩
1 VORSTER T E B, MAIR R J, SOGA K, et al. Centrifuge modeling of the effect of tunneling on buried pipelines mechanisms observed[C]// Proceedings of the 5th International Symposium TC28 on Geotechnical Aspects of Underground Construction in Soft Ground. Amsterdam: [s.n.], 2013: 327–333.
2 何川, 李讯, 江英超, 等 黄土地层盾构隧道施工的掘进试验研究[J]. 岩石力学与工程学报, 2013, 32 (9): 1736- 1743
HE Chuan, LI Xun, JIANG Ying-chao, et al Laboratory test on shield tunneling in loss strata[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (9): 1736- 1743
doi: 10.3969/j.issn.1000-6915.2013.09.002
3 王海涛, 金慧, 贾金青, 等 地铁隧道钻爆法施工对邻近埋地管道影响的模型试验研究[J]. 岩石力学与工程学报, 2018, 37 (Suppl.1): 219- 226
WANG Hai-tao, JIN Hui, JIA Jin-qing, et al Model test study on the influence of subway tunnel drilling and blasting method on adjacent buried pipeline[J]. Journal of Rock Mechanics and Engineering, 2018, 37 (Suppl.1): 219- 226
4 王绍君 暗挖隧道施工对平行地下管线性状影响研究[J]. 土木工程学报, 2014, 47 (Suppl.2): 334- 338
WANG Shao-jun Influence of tunneling construction on buried pipelines paralleled with running tunnel[J]. China Civil Engineering Journal, 2014, 47 (Suppl.2): 334- 338
5 彭基敏, 张孟喜 盾构法施工引起邻近地下管线位移分析[J]. 工业建筑, 2005, 35 (9): 50- 53
PENG Ji-min, ZHANG Meng-xi Analysis of the displacements of underground pipelines caused by shield construction[J]. Industrial Construction, 2005, 35 (9): 50- 53
doi: 10.3321/j.issn:1000-8993.2005.09.014
6 吴 波, 高 波 地铁区间隧道施工对近邻管线影响的三维数值模拟[J]. 岩石力学与工程学报, 2002, 21 (Suppl.2): 2451- 2456
WU Bo, GAO Bo 3D numerical simulation one ffect of tunnel construction on adjacent pipeline[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21 (Suppl.2): 2451- 2456
7 魏 纲, 魏新江, 裘新谷, 等 过街隧道施工对地下影响的三维数值模拟[J]. 岩石力学与工程学报, 2009, 28 (Suppl.1): 2853- 2859
WEI Gang, WEI Xin-jiang, QIU Xin-gu, et al 3D numerical simulation of effect of underground urban street-passage tunnel construction on adjacent pipeline[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28 (Suppl.1): 2853- 2859
8 LOGANATHAN N, POULOS H G Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124 (9): 846- 856
doi: 10.1061/(ASCE)1090-0241(1998)124:9(846)
9 魏 纲, 朱 奎 顶管施工对邻近地下管线的影响预测分析[J]. 岩土力学, 2009, 30 (3): 825- 831
WEI Gang, ZHU Kui Prediction for response of adjacent pipelines induced by pipe jacking construction[J]. Rock and Soil Mechanics, 2009, 30 (3): 825- 831
doi: 10.3969/j.issn.1000-7598.2009.03.045
10 刘晓强, 梁发云, 张浩, 等 隧道穿越引起地下管线竖向位移的能量变分分析方法[J]. 岩土力学, 2014, 35 (Suppl.2): 217- 222
LIU Xiao-qiang, LIANG Fa-yun, ZHANG Hao, et al Energy variational solution for settlement of buried pipeline induced by tunneling[J]. Rock and Soil Mechanics, 2014, 35 (Suppl.2): 217- 222
11 ATTEWELL  P  B,  YEATES  J,  SELBY  A  R.  Soil  movements induced  by  tunneling  and  their  effects  on  pipelines  and structures [M]. London: Blackie & Son Ltd, 1986.
12 张陈蓉, 俞 剑, 黄茂松 隧道开挖对邻近非连续接口地埋管线的影响分析[J]. 岩土工程学报, 2013, 35 (6): 1018- 1026
ZHANG Chen-rong, YU Jian, HUANG Mao-song Responses of adjacent underground jointed pipelines induced by tunneling[J]. Journal of Geotechnical Engineering, 2013, 35 (6): 1018- 1026
13 PASTERNAK P L. On a new method of analysis of an elastic foundation by means of two foundation constants[D]. Moscow: Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu I Arkhitekture, 1954.
14 ZHANG Z, HUANG M, ZHANG C, et al Time-domain analyses for pile deformation induced by adjacent excavation considering influences of viscoelastic mechanism[J]. Tunnelling and Underground Space Technology, 2019, 85: 392- 405
doi: 10.1016/j.tust.2018.12.020
15 张桓, 张子新 盾构隧道开挖引起既有管线的竖向变形[J]. 同济大学学报: 自然科学版, 2013, (8): 58- 64
ZHANG Heng, ZHANG Zi-xin The vertical deformation of the pipeline caused by the shield tunnel excavation[J]. Journal of Tongji University: Natural Science Edition, 2013, (8): 58- 64
16 可文海, 管凌霄, 刘东海, 等 盾构隧道下穿管道施工引起的管-土相互作用研究[J]. 岩土力学, 2020, 41 (1): 221- 228
KE Wen-hai, GUAN Ling-xiao, LIU Dong-hai, et al Research on upper pipeline-soil interaction induced by shield tunneling[J]. Rock and Soil Mechanics, 2020, 41 (1): 221- 228
17 林存刚, 黄茂松 基于Pasternak地基的盾构隧道开挖非连续地下管线的挠曲[J]. 岩土工程学报, 2019, (7): 1200- 1207
LIN Cun-gang, HUANG Mao-song Evaluation method for effect of tunneling on underground jointed pipelines[J]. Journal of Geotechnical Engineering, 2019, (7): 1200- 1207
18 何小龙, 杨天鸿, 周云伟, 等 考虑管土分离的基坑开挖引起邻近地下管线位移分析[J]. 土木建筑与环境工程 (中英文), 2019, 41 (6): 9- 16
HE Xiao-long, YANG Tian-hong, ZHOU Yun-wei, et al Analysis of pipeline displacement induced by adjoining foundation pit excavation considering pipeline-soil separation[J]. Civil Construction and Environmental Engineering, 2019, 41 (6): 9- 16
19 KERR A D A study of a new foundation model[J]. Acta Mechanica, 1965, 1 (2): 135- 147
doi: 10.1007/BF01174308
20 ZHANG Zhi-guo, ZHANG Cheng-ping, JIANG Yun-juan, et al Analytical solution for tunnel-soil-pile interaction mechanics based on Kerr foundation model[J]. KSCE Journal of Civil Engineering, 2019, 23 (6): 2756- 2771
doi: 10.1007/s12205-019-0791-x
21 宗翔 基坑开挖卸载引起下卧已建隧道的纵向变形研究[J]. 岩土力学, 2016, (Suppl.2): 571- 577
ZONG Xiang Study of longitudinal deformation of existing tunnel due to above excavation unloading[J]. Rock and Soil Mechanics, 2016, (Suppl.2): 571- 577
22 张冬梅, 宗翔, 黄宏伟 盾构隧道掘进引起上方已建隧道的纵向变形研究[J]. 岩土力学, 2014, (9): 2659- 2666
ZHANG Dong-mei, ZONG Xiang, HUANG Hong-wei Longitudinal deformation of existing tunnel due to underlying shield tunneling[J]. Rock and Soil Mechanics, 2014, (9): 2659- 2666
23 ZHANG Zhi-guo, HUANG Mao-song, XU Chen, et al Simplified solution for tunnel-soil-pile interaction in Pasternak’s foundation model[J]. Tunnelling and Underground Space Technology, 2018, 78 (8): 146- 158
24 MORFIDIS K. Research and development of methods for the modeling of foundation structural elements and soil[D]. Thessaloniki: Aristotle University of Thessaloniki, 2003.
25 吴为义. 盾构隧道周围地下管线的性状研[D]. 杭州: 浙江大学, 2008.
WU Wei-yi. Study on mechanical behaviors of buried pipelines induced by shield tunneling construction[D]. Hangzhou: Zhejiang University, 2008.
[1] 李璟 李重视 张迎春 朱善安 贺斌. FEM与FDM在脑电正问题求解中的比较[J]. J4, 2008, 42(4): 647-650.
[2] 朱斌 陈若曦 陈云敏 詹良通. 分层真空预压软土地基一维大变形固结模型及试验研究[J]. J4, 2007, 41(11): 1927-1931.