Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (6): 1036-1047    DOI: 10.3785/j.issn.1008-973X.2021.06.003
交通工程、土木工程     
盾构掘进行为对盾壳-土体接触应力的影响
金慧1,2,3(),袁大军1,2,3,*(),金大龙1,2,3
1. 北京交通大学 城市地下工程教育部重点实验室,北京 100044
2. 北京交通大学 隧道及地下工程教育部工程研究中心,北京 100044
3. 北京交通大学 土木建筑工程学院,北京 100044
Effect of shield excavation on shield shell-soil contact stress
Hui JIN1,2,3(),Da-jun YUAN1,2,3,*(),Da-long JIN1,2,3
1. Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
2. Tunnel and Underground Engineering Research Center of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
3. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
 全文: PDF(2380 KB)   HTML
摘要:

针对盾构掘进行为对盾壳和土体间接触应力的影响,将盾构和土体相互作用模型简化为含孔洞的弹性半空间平面应变模型,将盾构掘进作用简化为洞周径向、竖直和水平位移模式,基于复变函数理论,提出盾构掘进行为诱发的盾壳-土体附加接触应力计算方法,通过三维数值模拟进行分析与验证. 采用该方法,对相关参数进行敏感性分析. 研究表明,随着机土相对位移的增大,附加接触应力出现多个逐渐增大的应力峰值,相同量值的不同位移模式对应的附加应力峰值基本一致;在相同的掘进行为下,泊松比越小、土体弹性模量越大,极值点处的附加接触应力越大,盾壳-土体附加接触应力受埋深的影响较小. 定义盾周附加应力系数的分布函数,建立盾构机力和力矩增量平衡方程. 通过计算发现,盾构机的水平和竖向调姿荷载、偏转力矩与姿态角改变量呈正比例关系,纵向调姿荷载受姿态角改变的影响较小.

关键词: 盾构施工机土附加接触应力复变函数盾构掘进行为姿态调整    
Abstract:

The interaction model between the shield and the soil was simplified into the elastic half-space hole problem in order to analyze the contact stress between shield shell and soil during shield tunneling. The shield tunneling was simplified into radial, vertical and horizontal displacement boundary modes. Then a method of the additional contact stress between the shield shell and soil was proposed by using the complex variable function method, and the method was verified by three-dimensional numerical simulation. The sensitivity analysis of relevant parameters was conducted by using the method. Results show that the additional contact stress appears a number of gradually increasing stress peaks with the increase of the relative displacement of the machine and soil, and the corresponding peak stresses are approximately the same when the displacements in different modes are the same. When the displacement boundary condition is the same, the smaller Poisson's ratio and the larger elastic modulus of soil are, the greater the additional contact stress at the extreme point is, while the burial depth has little effect on the mechanical - soil additional contact stress. The distribution function of additional stress coefficient around the shield shell was defined, and the balance equations of force and moment increment of the shield were established. The calculations show that the horizontal posture adjustment load, vertical posture adjustment load, yaw moment of the shield machine are proportional to the change of attitude angle, and the longitudinal posture adjustment load is less affected by the change of attitude angle.

Key words: shield construction    machine-soil additional contact stress    complex variable function    shield excavation behavior    posture adjustment
收稿日期: 2020-05-30 出版日期: 2021-07-30
CLC:  U 451  
基金资助: 国家自然科学基金“联合基金项目”资助项目(U1834208)
通讯作者: 袁大军     E-mail: 17115308@bjtu.edu.cn;djyuan@bjtu.edu.cn
作者简介: 金慧(1991—),女,博士生,从事隧道与地下工程的研究. orcid.org/0000-0002-6024-0546. E-mail: 17115308@bjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
金慧
袁大军
金大龙

引用本文:

金慧,袁大军,金大龙. 盾构掘进行为对盾壳-土体接触应力的影响[J]. 浙江大学学报(工学版), 2021, 55(6): 1036-1047.

Hui JIN,Da-jun YUAN,Da-long JIN. Effect of shield excavation on shield shell-soil contact stress. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1036-1047.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.06.003        https://www.zjujournals.com/eng/CN/Y2021/V55/I6/1036

图 1  掘进姿态角对机土相对位移的影响
图 2  掘进中盾构与土体的接触关系
图 3  含孔洞的弹性半空间模型
图 4  共形映射区域
图 5  盾构偏移产生的位移边界条件
图 6  机-土接触作用三维数值模型
Es /MPa μ γ /(kN·m?3 K0
3.01 0.491 17.7 0.55
表 1  地层参数
s /m r1 /m R /m u0 /m Δv /m Δu /m
0 3.14 3.115 0.025 0 0
2 3.14 3.117 0.023 0.006 0.006
4 3.14 3.119 0.021 0.012 0.012
6 3.14 3.121 0.019 0.018 0.018
8 3.14 3.123 0.017 0.024 0.024
10 3.14 3.125 0.015 0.030 0.030
表 2  各断面的机土相对位移
图 7  附加接触应力的理论和数值结果
图 8  应力峰值纵向分布
图 9  不同机土相对位移下的盾构机-土体附加接触应力
图 10  不同埋深下的机土附加接触应力
图 11  不同泊松比的机土附加接触应力
图 12  不同弹性模量的机土附加接触应力
图 13  应力系数分布函数
图 14  盾构掘进运动
图 15  水平和竖向调姿荷载曲线
图 16  力矩曲线
图 17  纵向推力曲线
1 FESTA D, BROERE W, BOSCH J W Kinematic behaviour of a tunnel boring machine in soft soil: theory and observations[J]. Tunnelling and Underground Space Technology, 2015, 49: 208- 217
doi: 10.1016/j.tust.2015.03.007
2 BROERE W, FESTA D Correlation between the kinematics of a tunnel boring machine and the observed soil displacements[J]. Tunnelling and Underground Space Technology, 2017, 70: 125- 147
doi: 10.1016/j.tust.2017.07.014
3 周奇才, 陈俊儒, 何自强, 等 盾构智能化姿态控制器的设计[J]. 同济大学学报: 自然科学版, 2008, 36 (1): 76- 80
ZHOU Qi-cai, CHEN Jun-ru, HE Zi-qiang, et al Design of intellectualized controller of shield machine[J]. Journal of Tongji University: Natural Science, 2008, 36 (1): 76- 80
4 邓孔书. 土压平衡盾构推进系统特性及布局优化设计研究[D]. 北京: 清华大学, 2010: 16-20.
DONG Kong-shu. Research on characteristics and layout optimization for thrust system in EPB shield machines[D]. Beijing: Tsinghua University, 2010: 16-20.
5 SUGIMOTO M, SRAMOON A Theoretical model of shield behavior during excavation I: theory[J]. Journal of Geotechnical and Geoenvironmental, 2002, 128 (2): 138- 155
doi: 10.1061/(ASCE)1090-0241(2002)128:2(138)
6 SUGIMOTO M, SRAMOON A, KONISHI S, et al Simulation of shield tunneling behavior along a curved alignment in a multilayered ground[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133 (6): 684- 694
doi: 10.1061/(ASCE)1090-0241(2007)133:6(684)
7 沈翔, 袁大军 盾构俯仰角变化对盾构-土相互作用影响研究[J]. 岩土力学, 2020, 41 (4): 1366- 1376
SHEN Xiang, YUAN Da-jun Influence of shield pitch angle variation on shield-soil interaction[J]. Rock and Soil Mechanics, 2020, 41 (4): 1366- 1376
8 SRAMOON A, SUGIMOTO M. Development of a ground reaction curve for shield tunneling[C]// Proceedings of International Symposium Geotechnical Aspects of Underground Construction in Soft Ground. Rotterdam: Balkema, 1999: 437-442.
9 VERRUIJT A A complex variable solution for a deforming circular tunnel in an elastic half plane[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21: 77- 89
doi: 10.1002/(SICI)1096-9853(199702)21:2<77::AID-NAG857>3.0.CO;2-M
10 PARK K H Elastic solution for tunneling-induced ground movements in clay[J]. International Journal of Geomechanics, 2004, 4 (4): 310- 318
doi: 10.1061/(ASCE)1532-3641(2004)4:4(310)
11 PARK K H Analytical solution for tunneling-induced ground movement in clays[J]. Tunnelling and Underground Space Technology, 2005, 20: 249- 261
doi: 10.1016/j.tust.2004.08.009
12 王立忠, 吕学金 复变函数分析盾构隧道施工引起的地基变形[J]. 岩土工程学报, 2007, 29 (3): 319- 327
WANG Li-zhong, LV Xue-jin A complex variable solution for different kinds of oval deformation around circular tunnel in an elastic half plane[J]. Chinese Journal of Geotechnical Engineering, 2007, 29 (3): 319- 327
doi: 10.3321/j.issn:1000-4548.2007.03.002
13 童磊, 谢康和, 卢萌盟, 等 盾构任意衬砌变形边界条件下复变函数弹性解[J]. 浙江大学学报: 工学版, 2010, 44 (9): 1825- 1830
TONG Lei, XIE Kang-he, LU Meng-meng, et al Elastic complex variables solution for general arbitrary ground deformation of tunnels in clays[J]. Journal of Tongji University: Natural Science, 2010, 44 (9): 1825- 1830
doi: 10.3785/j.issn.1008-973X.2010.09.031
14 杨公标, 张成平, 闵博, 等 浅埋含空洞地层圆形隧道开挖引起的位移复变函数弹性解[J]. 岩土力学, 2018, 39 (Supple. 2): 25- 36
YANG Gong-biao, ZHANG Cheng-ping, MIN Bo, et al Elastic solution of soil displacement induced by shallow circular tunnel with a cavern in a stratum using function of complex variable method[J]. Rock and Soil Mechanics, 2018, 39 (Supple. 2): 25- 36
[1] 潘以恒, 罗其奇, 周斌, 陈建平. 半无限平面含注浆圈深埋隧道渗流场解析研究[J]. 浙江大学学报(工学版), 2018, 52(6): 1114-1122.
[2] 童磊, 谢康和, 卢萌盟, 王坤. 盾构任意衬砌变形边界条件下复变函数弹性解[J]. J4, 2010, 44(9): 1825-1830.