机械工程 |
|
|
|
|
多孔纤维型重整微反应器的等效电阻网络建模 |
徐志佳( ),余昌霖,王清辉*( ) |
华南理工大学 机械与汽车工程学院,广东 广州 510640 |
|
Equivalent resistance network modeling for reforming micro-reactor with porous fibrous structure |
Zhi-jia XU( ),Chang-lin YU,Qing-hui WANG*( ) |
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China |
1 |
FATHY A, ELAZIZ M A, ALHARBI A G A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of PEM fuel cell[J]. Renewable Energy, 2020, 146: 1833- 1845
doi: 10.1016/j.renene.2019.08.046
|
2 |
汪翼东. 面向PEMFC的甲醇现场重整制氢系统设计与应用研究[D]. 杭州: 浙江大学, 2019. WANG Yi-dong. Design and application study of methanol fuel processing system for PEMFC [D]. Hangzhou: Zhejiang University, 2019.
|
3 |
易邹东一. 面向PEMFC的自热型甲醇重整制氢反应器的研发[D]. 杭州: 浙江大学, 2019. YI Zou-dong-yi. Development of a self-heated methanol steaming reforming reactor for PEMFC [D]. Hangzhou: Zhejiang University, 2019.
|
4 |
YAN Y, ZHANG Z, ZHANG L, et al Investigation of autothermal reforming of methane for hydrogen production in a spiral multi-cylinder micro-reactor used for mobile fuel cell[J]. International Journal of Hydrogen Energy, 2015, 40 (4): 1886- 1893
doi: 10.1016/j.ijhydene.2014.11.140
|
5 |
PALO D R, DAGLE R A, HOLLADAY J D Methanol steam reforming for hydrogen production[J]. Chemical Reviews, 2007, 107 (10): 3992- 4021
doi: 10.1021/cr050198b
|
6 |
WANG F, WANG G Performance and cold spot effect of methanol steam reforming for hydrogen production in micro-reactor[J]. International Journal of Hydrogen Energy, 2016, 41 (38): 16835- 16841
doi: 10.1016/j.ijhydene.2016.07.083
|
7 |
贺行. 面向甲醇重整供氢系统的自热式CO去除微反应器[D]. 杭州: 浙江大学, 2017. HE Xing. Self-heated microreactor for CO removal from hydrogen supply system via methanol reforming [D]. Hangzhou: Zhejiang University, 2017.
|
8 |
HUANG Y X, JANG J Y, CHENG C H Fractal channel design in a micro methanol steam reformer[J]. International Journal of Hydrogen Energy, 2014, 39 (5): 1998- 2007
doi: 10.1016/j.ijhydene.2013.11.088
|
9 |
钱淼, 梅德庆, 刘宾虹, 等 微凸台阵列型重整微反应器的传热传质特性[J]. 浙江大学学报: 工学版, 2011, 45 (8): 1387- 1392 QIAN Miao, Mei De-qing, LIU Bin-hong, et al Heat and mass transfer characteristics in reforming micro-reactor with micro-pin-fin arrays[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (8): 1387- 1392
|
10 |
梁灵威. 甲醇重整制氢A型微通道反应器流场优化与传热传质特性研究[D]. 杭州: 浙江大学, 2015. LIANG Ling-wei. Research on flow field optimization and heat and mass transfer capacity of the A-type microchannel reactor for hydrogen production via methanol reforming [D]. Hangzhou: Zhejiang University, 2019.
|
11 |
MEI D, FENG Y, QIAN M, et al An innovative micro-channel catalyst support with a micro-porous surface for hydrogen production via methanol steam reforming[J]. International Journal of Hydrogen Energy, 2016, 41 (4): 2268- 2277
doi: 10.1016/j.ijhydene.2015.12.044
|
12 |
ZHOU W, KE Y, WANG Q, et al Development of cylindrical laminated methanol steam reforming microreactor with cascading metal foams as catalyst support[J]. Fuel, 2017, 191 (3): 46- 53
doi: 10.1016/j.fuel.2016.11.058
|
13 |
LIU Y, ZHOU W, CHEN L, et al Optimal design and fabrication of surface microchannels on copper foam catalyst support in a methanol steam reforming microreactor[J]. Fuel, 2019, 253: 1545- 1555
doi: 10.1016/j.fuel.2019.05.099
|
14 |
KE Y, ZHOU W, CHU X, et al Porous copper fiber sintered felts with surface microchannels for methanol steam reforming microreactor for hydrogen production[J]. International Journal of Hydrogen Energy, 2019, 44 (12): 5755- 5765
doi: 10.1016/j.ijhydene.2019.01.141
|
15 |
TANG Y, ZHOU W, PAN M, et al Porous copper fiber sintered felts: an innovative catalyst support of methanol steam reformer for hydrogen production[J]. International Journal of Hydrogen Energy, 2008, 33 (12): 2950- 2956
doi: 10.1016/j.ijhydene.2008.04.006
|
16 |
ZHOU W, WANG Q, LI J, et al Hydrogen production from methanol steam reforming using porous copper fiber sintered felt with gradient porosity[J]. International Journal of Hydrogen Energy, 2015, 40 (1): 244- 255
doi: 10.1016/j.ijhydene.2014.10.139
|
17 |
KUNDU A, PARK J M, AHN J E, et al Micro-channel reactor for steam reforming of methanol[J]. Fuel, 2007, 86 (9): 1331- 1336
doi: 10.1016/j.fuel.2006.08.003
|
18 |
AMIRI E O, HORMOZI F, KHOSHANDAM B Methanol steam reforming integrated with oxidation in a conical annulus micro-reactor[J]. International Journal of Hydrogen Energy, 2014, 39 (2): 761- 769
doi: 10.1016/j.ijhydene.2013.10.130
|
19 |
TONOMURA O, TANAKA S, NODA M, et al CFD-based optimal design of manifold in plate-fin microdevices[J]. Chemical Engineering Journal, 2004, 101 (1): 397- 402
|
20 |
AMADOR C, GAVRIILIDIS A, ANGELI P Flow distribution in different microreactor scale-out geometries and the effect of manufacturing tolerances and channel blockage[J]. Chemical Engineering Journal, 2004, 101 (1): 379- 390
|
21 |
MEI D, QIAN M, LIU B, et al A micro-reactor with micro-pin-fin arrays for hydrogen production via methanol steam reforming[J]. Journal of Power Sources, 2012, 205 (2): 367- 376
|
22 |
LIU H, LI P Even distribution/dividing of single-phase fluids by symmetric bifurcation of flow channels[J]. International Journal of Heat and Fluid Flow, 2013, 40 (4): 165- 179
|
23 |
郑帅, 谭大鹏, 李霖, 等 微反应器计算流体力学与离散元建模及调控[J]. 浙江大学学报: 工学版, 2019, 53 (7): 1237- 1251 ZHENG Shuai, TAN Da-peng, LI Lin, et al Ultrasonic coupled microreactor CFD-DEM dynamic modeling and regulating method[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (7): 1237- 1251
|
24 |
冯艳冰. 表面多孔微通道制氢反应器的设计与制造基础研究[D]. 杭州: 浙江大学, 2019. FENG Yan-bing. Fundamental study on the design and fabrication of micro channel reactor with porous surface for hydrogen production [D]. Hangzhou: Zhejiang University, 2019.
|
25 |
QIAN M, MEI D, YI Z, et al Fluid flow and heat transfer performance in a micro-reactor with non-uniform micro-pin-fin arrays for hydrogen production at low Reynolds number[J]. International Journal of Hydrogen Energy, 2017, 42 (1): 553- 561
doi: 10.1016/j.ijhydene.2016.10.150
|
26 |
WANG Y, HUANG L, MEI D, et al Numerical modeling of microchannel reactor with porous surface microstructure based on fractal geometry[J]. International Journal of Hydrogen Energy, 2018, 43 (49): 22447- 22457
doi: 10.1016/j.ijhydene.2018.10.135
|
27 |
PAN M, TANG Y, YU H, et al Modeling of velocity distribution among microchannels with triangle manifolds[J]. Aiche Journal, 2010, 55 (9): 1969- 1982
|
28 |
TONDEUR D, FAN Y, COMMENGE J M, et al Uniform flows in rectangular lattice networks[J]. Chemical Engineering Science, 2011, 66 (21): 5301- 5312
doi: 10.1016/j.ces.2011.07.027
|
29 |
MEI D, LIANG L, QIAN M, et al Modeling and analysis of flow distribution in an A-type microchannel reactor[J]. International Journal of Hydrogen Energy, 2013, 38 (35): 15488- 15499
doi: 10.1016/j.ijhydene.2013.09.105
|
30 |
CHENG X, SASTRY A M, LAYTON B E Transport in stochastic fibrous networks[J]. Journal of Engineering Materials and Technology, 2001, 123 (1): 12- 19
|
31 |
LUU H T, PERROT C, MONCHIET V, et al Three-dimensional reconstruction of a random fibrous medium: geometry, transport, and sound absorbing properties[J]. Journal of the Acoustical Society of America, 2017, 141 (6): 4768- 4780
doi: 10.1121/1.4989373
|
32 |
方玺, 葛权耕 基于随机电阻网络碳毡复合层力阻建模[J]. 应用数学和力学, 2013, 34 (1): 63- 71 FANG Xi, GE Quan-geng Modeling based on the random resistance network carbon felt composite layer[J]. Applied Mathematics and Mechanics, 2013, 34 (1): 63- 71
doi: 10.3879/j.issn.1000-0887.2013.01.007
|
33 |
DIDARI S, HARRIS T A L, HUANG W, et al Feasibility of periodic surface models to develop gas diffusion layers: a gas permeability study[J]. International Journal of Hydrogen Energy, 2012, 37 (19): 14427- 14438
doi: 10.1016/j.ijhydene.2012.06.100
|
34 |
XU Z J, YANG S, HU G H, et al Numerical study of flow distribution uniformity for the optimization of gradient porosity configuration of porous copper fiber sintered felt for hydrogen production through methanol steam reforming micro-reactor[J]. International Journal of Hydrogen Energy, 2018, 43 (9): 4355- 4370
doi: 10.1016/j.ijhydene.2018.01.083
|
35 |
DJILALI N Computational modelling of polymer electrolyte membrane (PEM) fuel cells: challenges and opportunities[J]. Energy, 2007, 32 (4): 269- 280
doi: 10.1016/j.energy.2006.08.007
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|