Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (3): 512-520    DOI: 10.3785/j.issn.1008-973X.2020.03.011
土木工程     
下击暴流作用下低矮建筑风荷载大涡模拟
汪之松1,2(),邓骏1,方智远1,陈圆圆1
1. 重庆大学 土木工程学院,重庆 400045
2. 重庆大学 山地城镇建设与新技术教育部重点实验室,重庆 400045
Large eddy simulation of wind load on low-rise buildings subjected to downburst
Zhi-song WANG1,2(),Jun DENG1,Zhi-yuan FANG1,Yuan-yuan CHEN1
1. College of Civil Engineering, Chongqing University, Chongqing 400045, China
2. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400045, China
 全文: PDF(2313 KB)   HTML
摘要:

采用大涡模拟方法,研究非稳态雷暴风作用下低矮建筑的风荷载特征,分析下击暴流的不同发展阶段中建筑物所在的径向位置、屋面坡度和风向角等参数对建筑风荷载的影响. 结果表明:下击暴流各发展阶段风荷载效应差异显著,当气流冲击地面后形成的首个环形涡掠过建筑时,建筑表面风荷载最大;当建筑物处于不同径向位置时,环涡经过建筑物形成的瞬态风压与同样位置处稳态射流作用下的风压差异较大;屋面坡度对迎风面风压系数分布影响较小,但对迎风侧屋面风压系数分布的影响非常显著,随着屋面坡度的增大,迎风屋面风压系数由负值逐渐变为正值;建筑物迎风前沿角部区域的风压系数受风向角的影响较为明显,在所测试的工况中,风向角为45°时影响最为显著.

关键词: 下击暴流大涡模拟低矮建筑风荷载环形涡    
Abstract:

The large eddy simulation method was used to study the wind load characteristics of low-rise buildings under the action of unsteady thunderstorms. The following aspects were analyzed to study the influence on the wind load of the building in different development stages of the downburst: the radial position of the building, the roof slope and the wind direction angle, etc. Results show that there are significant differences in wind load effect at different development stages. When the first ring vortex generated by the airflow hitting the ground blows over the building, the wind load of the building is the most unfavorable. While the building is in different radial positions, the transient wind pressure caused by the ring vortex passing through the building is quite different from that caused by the steady downburst at the same position. The slope of roof has less influence on the distribution of wind pressure coefficient in the windward roof, but great influence on that in the windward side roof. When the slope of the roof increases, the wind pressure coefficient of the windward roof gradually changes from negative value to positive value. The wind pressure coefficient for the corner of the windward front of the building is obviously affected by the wind direction angle. In the tested condition, the influence is most significant when the wind direction angle is 45°.

Key words: downburst    large eddy simulation    low-rise building    wind load    ring vortex
收稿日期: 2019-03-02 出版日期: 2020-03-05
CLC:  TU 312.1  
基金资助: 国家自然科学基金资助项目(51208537)
作者简介: 汪之松(1980—),男,副教授,从事结构风工程研究. orcid.org/0000-0001-9624-6061. E-mail: wangzhisong@cqu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
汪之松
邓骏
方智远
陈圆圆

引用本文:

汪之松,邓骏,方智远,陈圆圆. 下击暴流作用下低矮建筑风荷载大涡模拟[J]. 浙江大学学报(工学版), 2020, 54(3): 512-520.

Zhi-song WANG,Jun DENG,Zhi-yuan FANG,Yuan-yuan CHEN. Large eddy simulation of wind load on low-rise buildings subjected to downburst. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 512-520.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.03.011        http://www.zjujournals.com/eng/CN/Y2020/V54/I3/512

图 1  数值模型计算域与边界条件示意图
图 2  网格划分示意图
工况编号 i r/m θ/(°) 工况编号 i r/m θ/(°)
1 0.1 Djet 0 5 0.1 1.5Djet 0
2 0.4 Djet 0 6 0.1 2.0Djet 0
3 0.5 Djet 0 7 0.1 Djet 45
4 1 Djet 0 8 0.1 Djet 90
表 1  数值模拟工况
图 3  建筑模型表面测点布置与测点编号
图 4  网格数量不同时无量纲风剖面对比
图 5  不同工况下的建筑表面风压系数对比
图 6  无量纲竖向风剖面对比
图 7  无量纲径向风剖面对比
图 8  迎风面与侧面中心风压系数时程
图 9  下击暴流发展阶段不同时刻的纵剖面风速云图与建筑物周围空气流线图
图 10  下击暴流发展阶段下屋面平均风压系数分布
图 11  下击暴流下屋面平均风压系数分布
图 12  不同屋面坡度模型中心线压力系数
图 13  风向角影响下的平均风压系数分布
1 HJELMFELT M R Structure and life cycle of microburst outflows observed in Colorado[J]. Journal of Applied Meteorology, 1988, 27 (8): 900- 927
doi: 10.1175/1520-0450(1988)027<0900:SALCOM>2.0.CO;2
2 FUJITA T T. Manual of downburst identification for project NIMROD [R]. SMRP Research Paper 156, University of Chicago, 104[NTISPB-286048], 1978.
3 MUNICH R E. Topics GEO natural catastrophes 2009 Analyses, assessment, positions (US VERSION) [R]. Munich RE, 2009.
4 MCCARTHY J, WILSON J W, FUJITA T T The joint airport weather studies project[J]. Bulletin of the American Meteorological Society, 2013, 63 (1): 15- 22
5 FUJITA T T. Objectives, operations, and results of project NIMROD [C] // Proceedings of 11th Conference on Severe Local Storms. Kansas: AMS, 1979: 259-266.
6 FUJITA T T. The downburst: microburst and macroburst report of projects NIMROD and JAWS [M]. Chicago: University of Chicago, 1985.
7 HOLMES J D. Physical modelling of thunderstorm downdrafts by wind tunnel jet [C] // Proceedings of the second AWES Workshop. Melbourne: AWES, 1992: 29-32.
8 CASSAR R. Simulation of a thunderstorm downdraft by a wind tunnel jet [R]. [S. l.]: Summer Vacation Report, DBCE 92/22(M)CSIRO, 1992.
9 LUO X Y, ZHANG C, XIONG S S, et al Numerical study of the flow fields in downburst with consideration[J]. Civil Engineering Journal, 2018, 4 (8): 1783
doi: 10.28991/cej-03091114
10 SENGUPTA A, SARKAR P P, RAJAGOPALAN G. Numerical and physical simulation of thunderstorm downdraft winds and their effects on buildings [C] // Proceedings of the First American Conference in Wind Engineering. Carolina: SC, 2001.
11 SENGUPTA A, SARKAR P P Experimental measurement and numerical simulation of an impinging jet with application to thunderstorm microburst winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96 (3): 345- 365
doi: 10.1016/j.jweia.2007.09.001
12 LETCHFORD C W, CHAY M T Pressure distributions on a cube in a simulated thunderstorm downburst-Part A: stationary downburst observations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90 (7): 711- 732
doi: 10.1016/S0167-6105(02)00158-7
13 汤卓, 王兆勇, 卓士梅, 等 雷暴冲击风作用下双坡屋面风压分布[J]. 东南大学学报: 自然科学版, 2014, 44 (1): 168- 172
TANG Zhuo, WANG Zhao-yong, ZHOU Shi-mei, et al Wind pressure distribution of double slope roofs under thunderstorm impact wind[J]. Journal of Southeast University: Natural Science Edition, 2014, 44 (1): 168- 172
14 ZHANG Y, HU H, SARKAR P P Comparison of microburst-wind loads on low-rise structures of various geometric shapes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 133: 181- 190
doi: 10.1016/j.jweia.2014.06.012
15 陈勇, 崔碧琪, 彭志伟, 等 球壳型屋盖在冲击风作用下的抗风设计参数及CFD分析[J]. 空气动力学学报, 2012, 30 (4): 456- 463
CHEN Yong, CUI Bi-qi, PENG Zhi-wei, et al Wind-resistant design parameters and CFD analysis of spherical shell roof under impact wind[J]. Acta Aerodynamica Sinica, 2012, 30 (4): 456- 463
doi: 10.3969/j.issn.0258-1825.2012.04.006
16 GELETA T N, ELSHAER A, MELAKU A, et al. Computational wind load evaluation of low-rise buildings with complex roofs using LES [C] // The 7th International Symposium on Computational Wind Engineering. Seoul: [s. n.], 2018 .
17 ZHANG Y, SARKAR P P, HU H An experimental study of flow fields and wind loads on gable-roof building models in microburst-like wind[J]. Experiments in Fluids, 2013, 54 (5): 1511
doi: 10.1007/s00348-013-1511-9
18 JUBAYER C, ELATAR A, HANGAN H. Pressure distributions on a low-rise building in a laboratory simulated downburst [C] // Proceedings of the 8th International Colloquium on Bluff Body Aerodynamics and Applications. Boston: [s. n.], 2016.
19 LETCHFORD C W, CHAY M T Pressure distributions on a cube in a simulated thunderstorm downburst. part B: moving downburst observations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90 (7): 733- 753
doi: 10.1016/S0167-6105(02)00163-0
20 HAINES M, TAYLOR I Numerical investigation of the flow field around low rise buildings due to a downburst event using Large Eddy Simulation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 172: 12- 30
doi: 10.1016/j.jweia.2017.10.028
21 JESSON M, STERLING M, LETCHFORD C, et al Aerodynamic forces on generic buildings subject to transient, downburst-type winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 137: 58- 68
doi: 10.1016/j.jweia.2014.12.003
22 LETCHFORD C W, ILLIDGE G. Turbulence and topographic effects in simulated thunderstorm downdrafts by wind tunnel jet [C] // Proceedings of the Tenth International Conference on Wind Engineering, Denmark: [s. n.], 1999: 1907-1912.
23 WOOD G S, KWORK K C S, MOTTERAMB N A, et al Physical and numerical modeling of thunder-storm downbursts[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89 (6): 535- 552
doi: 10.1016/S0167-6105(00)00090-8
[1] 沈国辉,包玉南,郭勇,宋刚,王轶文. 输电线顺线路方向风荷载及分配模式[J]. 浙江大学学报(工学版), 2020, 54(9): 1658-1665.
[2] 袁仁育, 罗坤, 汪建文, 冀文举, 张立茹, 王强, 樊建人. 动态入流条件下风力机运行控制的数值模拟[J]. 浙江大学学报(工学版), 2018, 52(11): 2128-2135.
[3] 谢恩献, 袁行飞, 陈冲. 台风作用下弦支网壳结构动力失效[J]. 浙江大学学报(工学版), 2017, 51(2): 238-244.
[4] 桂龙辉, 谢霁明, 林颖孜, 张鸿玮. 悬挑环形廊桥的气动弹性模型试验[J]. 浙江大学学报(工学版), 2017, 51(11): 2121-2129.
[5] 柯世堂,余玮,王同光. 停机状态叶片位置对风力机体系气动性能影响[J]. 浙江大学学报(工学版), 2016, 50(7): 1230-1238.
[6] 方珍龙,康勇,王晓川,刘文川,李登,周勇祥. 腔径比对亥姆赫兹自振射流性能影响[J]. 浙江大学学报(工学版), 2016, 50(11): 2100-2106.
[7] 楼文娟,罗罡,胡文侃. 输电线路等效静力风荷载与调整系数计算方法[J]. 浙江大学学报(工学版), 2016, 50(11): 2120-2127.
[8] 柯世堂,朱鹏. 基于大涡模拟增设气动措施冷却塔风荷载频域特性[J]. 浙江大学学报(工学版), 2016, 50(11): 2143-2149.
[9] 罗乐,郑旭,吕义,郝志勇. 考虑受电弓系统的高速列车气动噪声分析[J]. 浙江大学学报(工学版), 2015, 49(11): 2179-2185.
[10] 赵阳,林寅,余世策. 大型低矮圆柱壳结构风荷载特性的风洞试验[J]. 浙江大学学报(工学版), 2014, 48(5): 820-826.
[11] 柯世堂, 王同光, 陈少林, 葛耀君. 大型风力机全机风振响应和等效静力风荷载[J]. 浙江大学学报(工学版), 2014, 48(4): 686-692.
[12] 沈国辉, 项国通, 邢月龙, 郭勇, 孙炳楠, 楼文娟. 2种风场下格构式圆钢塔的天平测力试验研究[J]. J4, 2014, 48(4): 704-710.
[13] 钟振宇, 楼文娟. 设置非等截面TLCD高层建筑在风荷载作用下减振分析[J]. J4, 2013, 47(6): 1081-1087.
[14] 麻剑锋, 刘凯凯, 徐雅, 沈新荣, 孙大明. 流体谐振型时均流诱导声振荡二维数值模拟[J]. J4, 2013, 47(2): 300-307.
[15] 李勰, 陈水福. 门式刚架轻钢结构抗风安全性分析[J]. J4, 2013, 47(12): 2141-2145.