| 
					
						| 
								
									| 机械与能源工程 |  |   |  |  
    					|  |  
    					| 基于模型预测控制的仿人机器人实时步态优化 |  
						| 丁加涛(  ),何杰,李林芷,肖晓晖*(  ) |  
					| 武汉大学 动力与机械学院,湖北 武汉 430072 |  
						|  |  
    					| Real-time walking pattern optimization for humanoid robot based on model predictive control |  
						| Jia-tao DING(  ),Jie HE,Lin-zhi LI,Xiao-hui XIAO*(  ) |  
						| School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China |  
					
						| 
								
									|  
          
          
            
             
												
												
												| 
												
												引用本文:
																																丁加涛,何杰,李林芷,肖晓晖. 基于模型预测控制的仿人机器人实时步态优化[J]. 浙江大学学报(工学版), 2019, 53(10): 1843-1851.	
																															 
																																Jia-tao DING,Jie HE,Lin-zhi LI,Xiao-hui XIAO. Real-time walking pattern optimization for humanoid robot based on model predictive control. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1843-1851.	
																															 链接本文: 
																
																	
																	http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.10.001
																	   或   
																
																
																http://www.zjujournals.com/eng/CN/Y2019/V53/I10/1843
														    |  
            
									            
									                
																																															
																| 1 | 颜云辉, 徐靖, 陆志国, 等 仿人服务机器人发展与研究现状[J]. 机器人, 2017, 39 (4): 551- 564 YAN Yun-hui, XU Jing, LU Zhi-guo, et al Development and research status of humanoid service robots[J]. Robot, 2017, 39 (4): 551- 564
 |  
																| 2 | 张继文, 刘莉, 陈恳 面向全方位双足步行跟随的路径规划[J]. 自动化学报, 2016, 42 (2): 189- 201 ZHANG Ji-wen, LIU Li, CHEN Ken Omni-directional bipedal walking path planning[J]. Acta Automatica Sinica, 2016, 42 (2): 189- 201
 |  
																| 3 | 孙广彬, 王宏, 陆志国, 等 仿人足底肌电特征的机器人行走规划[J]. 自动化学报, 2015, 41 (5): 874- 884 SUN Guang-bin, WANG Hong, LU Zhi-guo, et al Humanoid walking planning based on EMG from human foot-bottom[J]. Acta Automatica Sinica, 2015, 41 (5): 874- 884
 |  
																| 4 | 易江, 朱秋国, 吴俊, 等 基于最优控制的仿人机器人行走振动抑制[J]. 机器人, 2018, 40 (2): 129- 135 YI Jiang, ZHU Qiu-guo, WU Jun, et al Walking vibration suppression for humanoid robot based on optimal control[J]. Robot, 2018, 40 (2): 129- 135
 |  
																| 5 | NASHNER L M, MCCOLLUM G The organization of human postural movements: a formal basis and experimental synthesis[J]. Behavioral and Brain Sciences, 1985, 8 (1): 135- 150 doi: 10.1017/S0140525X00020008
 |  
																| 6 | DIEDAM H, DIMITROV D, WIEBER P B, et al. Online walking gait generation with adaptive foot positioning through linear model predictive control [C] // IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice: IEEE, 2008: 1121-1126. |  
																| 7 | FU C. Perturbation recovery of biped walking by updating the footstep [C] // IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago: IEEE, 2014: 2509-2514. |  
																| 8 | 张继文, 刘莉, 陈恳 基于AHRS反馈的仿人机器人步行稳定控制[J]. 清华大学学报: 自然科学版, 2016, 56 (8): 818- 823 ZHANG JI-wen, LIU Li, CHEN Ken Stabilizing control of humanoids' walking based on AHRS feedback[J]. Journal of Tsinghua University: Science and Technology, 2016, 56 (8): 818- 823
 |  
																| 9 | ZHANG L, FU C Predicting foot placement for balance through a simple model with swing leg dynamics[J]. Journal of Biomechanics, 2018, 77 (17): 155- 162 |  
																| 10 | YU Z, ZHOU Q, CHEN X, et al Disturbance rejection for biped walking using zero-moment point variation based on body acceleration[J]. IEEE Transactions on Industrial Informatics, 2018, 15 (4): 2265- 2276 |  
																| 11 | DING J, WANG Y, YANG M, et al Walking stabilization control for humanoid robots on unknown slope based on walking sequences adjustment[J]. Journal of Intelligent and Robotic Systems, 2018, 90 (3/4): 323- 338 |  
																| 12 | PARK S, HORAK F B, KUO A D Postural feedback responses scale with biomechanical constraints in human standing[J]. Experimental Brain Research, 2004, 154 (4): 417- 427 doi: 10.1007/s00221-003-1674-3
 |  
																| 13 | KUDOH S, KOMURA T, IKEUCHI K. Stepping motion for a human-like character to maintain balance against large perturbations [C] // IEEE International Conference on Robotics and Automation. Orlando: IEEE, 2006: 2661-2666. |  
																| 14 | CHEN X, YU Z, ZHANG W, et al Bioinspired control of walking with toe-off, heel-strike, and disturbance rejection for a biped robot[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (10): 7962- 7971 doi: 10.1109/TIE.2017.2698361
 |  
																| 15 | LI C, XIONG R, ZHU Q, et al Push recovery for the standing under-actuated bipedal robot using the hip strategy[J]. Frontiers of Information Technology and Electronic Engineering, 2015, 16 (7): 579- 593 doi: 10.1631/FITEE.14a0230
 |  
																| 16 | 席裕庚, 李德伟, 林姝 模型预测控制: 现状与挑战[J]. 自动化学报, 2013, 39 (3): 222- 236 XI Yu-geng, LI De-wei, LIN Shu Model predictive control: status and challenges[J]. Acta Automatica Sinica, 2013, 39 (3): 222- 236
 |  
																| 17 | AFTAB Z, ROBERT T, WIEBER P B. Ankle, hip and stepping strategies for humanoid balance recovery with a single model predictive control scheme [C] // IEEE-RAS International Conference on Humanoid Robots. Osaka: IEEE, 2012: 159-164. |  
																| 18 | LACK J. Integrating the effects of angular momentum and changing center of mass height in bipedal locomotion planning [C] // IEEE-RAS International Conference on Humanoid Robots. Seoul: IEEE, 2015: 651-656. |  
																| 19 | SHAFIEE-ASHTIANI M, YOUSEFI-KOMA A, SHARIAT-PANAHI M. Robust bipedal locomotion control based on model predictive control and divergent component of motion [C] // IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 3505-3510. |  
																| 20 | KAJITA S, KANEHIRO F, KANEKO K, et al. The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation [C] // IEEE/RSJ International Conference on Intelligent Robots and Systems. Maui: IEEE, 2001: 239-246. |  
																| 21 | PRATT J, CARFF J, DRAKUNOV S, et al. Capture point: a step toward humanoid push recovery [C] // IEEE-RAS International Conference on Humanoid Robots. Genova: IEEE, 2006: 200-207. |  
																| 22 | VUKOBRATOVI? M, BOROVAC B Zero-moment point-thirty five years of its life[J]. International Journal of Humanoid Robotics, 2004, 1 (01): 157- 173 doi: 10.1142/S0219843604000083
 |  
																| 23 | 陈虹. 模型预测控制[M]. 北京: 科学出版社, 2013. |  
																| 24 | HERDT A, PERRIN N, WIEBER P B. Walking without thinking about it [C] // IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei: IEEE, 2010: 190-195. |  
																| 25 | NAVEAU M, KUDRUSS M, STASSE O, et al A reactive walking pattern generator based on nonlinear model predictive control[J]. IEEE Robotics and Automation Letters, 2017, 2 (1): 10- 17 doi: 10.1109/LRA.2016.2518739
 |  
             
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |