计算机技术 |
|
|
|
|
基于反向标签传播的移动终端用户群体发现 |
李志, 单洪, 马涛, 黄郡 |
国防科技大学 电子对抗学院, 安徽 合肥 230037 |
|
Group discovery of mobile terminal users based on reverse-label propagation algorithm |
LI Zhi, SHAN Hong, MA Tao, HUANG Jun |
College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China |
引用本文:
李志, 单洪, 马涛, 黄郡. 基于反向标签传播的移动终端用户群体发现[J]. 浙江大学学报(工学版), 2018, 52(11): 2171-2179.
LI Zhi, SHAN Hong, MA Tao, HUANG Jun. Group discovery of mobile terminal users based on reverse-label propagation algorithm. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2171-2179.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.11.016
或
http://www.zjujournals.com/eng/CN/Y2018/V52/I11/2171
|
[1] DEY A, HIGHTOWER J, LARA E D, et al. Location-based services[J]. IEEE Pervasive Computing, 2017, 9(1):11-12.
[2] 潘理, 吴鹏, 黄丹华. 在线社交网络群体发现研究进展[J]. 电子与信息学报, 2017, 39(9):2097-2107 PAN Li, WU Peng, HUANG Dan-hua. Reviews on group detection in online social networks[J]. Journal of Electronics and Information Technology, 2017, 39(9):2097-2107
[3] 方滨兴, 贾焰, 韩毅. 社交网络分析核心科学问题、研究现状及未来展望[J]. 中国科学院院刊, 2015(2):187-199 FANG Bin-xing, JIA Yan, HAN Yi. The core scientific problems, research status and future prospects of social network analysis[J]. Bulletin of Chinese Academy of Sciences, 2015(2):187-199
[4] 王桦, 韩同阳, 周可. 公安情报中基于关键图谱的群体发现算法[J]. 浙江大学学报:工学版, 2017, 51(6):1173-1180 WANG Hua, HAN Tong-yang, ZHOU Ke. Key graph-based community detection algorithm for public security intelligence[J]. Journal of Zhejiang University:Engineering Science, 2017, 51(6):1173-1180
[5] KIM J, LEE J G. Community detection in multi-layer graphs:a survey[J]. ACM SIGMOD Record, 2015, 44(3):37-48.
[6] HUNG C C, CHANG C W, PENG W C. Mining trajectory profiles for discovering user communities[C]//Proceedings of the 2009 International Workshop on Location Based Social Networks. Seattle:ACM, 2009:1-8.
[7] BOSTON D, MARDENFELD S, PAN J, et al. Leveraging Bluetooth co-location traces in group discovery algorithms[J]. Pervasive and Mobile Computing, 2014, 11(6):88-105.
[8] JAYADEVAN V, BHARADWAJ K, KUMAR A, et al. Discovering local social groups using mobility data[J]. International Journal of Computer Applications, 2015, 120:15-19.
[9] LIM K H, CHAN J, LECKIE C, et al. Detecting location-centric communities using social-spatial links with temporal constraints[C]//Advances in Information Retrieval:37th European Conference on IR Research. Vienna:ECIR, 2015:489-494.
[10] BROWN C, NICOSIA V, SCELLATO S, et al. Social and place-focused communities in location-based online social networks[J]. European Physical Journal B, 2013, 86(6):1-10.
[11] BROWN C, NICOSIA V, SCELLATO S, et al. The importance of being placefriends:discovering location-focused online communities[C]//ACM Workshop on Online Social Networks. Helsinki:ACM, 2012:31-36.
[12] LIU J, LI Y, LING G, et al. Community detection in location-based social networks:an entropy-based approach[C]//IEEE International Conference on Computer and Information Technology. Nadi:IEEE, 2017:452-459.
[13] CRANDALL D J, BACKSTROM L, COSLEY D, et al. Inferring social ties from geographic coincidences[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(52):22436-22441.
[14] XIAO X, ZHENG Y, LUO Q, et al. Inferring social ties between users with human location history[J]. Journal of Ambient Intelligence and Humanized Computing, 2014, 5(1):3-19.
[15] TAN R, GU J, CHEN P, et al. Link prediction using protected location history[C]//2013 International Conference on Computational and Information Sciences. Shiyang:IEEE, 2013:795-798.
[16] WANG D, PEDRESCHI D, SONG C, et al. Human mobility, social ties, and link prediction[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego:ACM, 2011:1100-1108.
[17] 马春来, 单洪, 马涛, 等. 随机森林改进算法在LBS用户社会关系推断中的应用[J]. 小型微型计算机系统, 2016, 37(12):2708-2712. MA Chun-lai, SHAN Hong, MA Tao, et al. An improved random forests algorithm with application to social ties inferring of LBS users[J]. Journal of Chinese Computer Systems, 2016, 37(12):2708-2712.
[18] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191):1492-1496.
[19] 陈晶, 万云. 社交网络中基于模块度最大化的标签传播算法的研究[J]. 通信学报, 2017, 38(2):25-33 CHEN Jing, WAN Yun. Research on label propagation algorithm based on modularity maximization in the social network[J]. Journal on Communications, 2017, 38(2):25-33
[20] WANG Z, ZHANG D, ZHOU X, et al. Discovering and profiling overlapping communities in location-based social networks[J]. IEEE Transactions on Systems Man and Cybernetics Systems, 2014, 44(4):499-509.
[21] LIU D, WEI W, SONG G, et al. Community discovery with location-interaction disparity in mobile social networks[J]. ZTE Communications, 2015(2):53-61.
[22] CHO E, MYERS S A, LESKOVEC J. Friendship and mobility:user movement in location-based social networks[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego:ACM, 2011:1082-1090.
[23] BAO J, ZHENG Y, MOKBEL M F. Location-based and preference-aware recommendation using sparse geo-social networking data[C]//International Conference on Advances in Geographic Information Systems. Redondo Beach:ACM, 2012:199-208.
[24] LANCICHINETTI A, FORTUNATO S, KERTÉSZ J. Detecting the overlapping and hierarchical community structure of complex networks[J]. New Journal of Physics, 2008, 11(3):19-44.
[25] 黄健斌, 钟翔, 孙鹤立, 等. 基于相似性模块度最大约束标记传播的网络社团发现算法[J]. 北京大学学报:自然科学版, 2013, 49(3):389-396 HUANG Jian-bin, ZHONG Xiang, SUN He-li, et al. A network community detection algorithm via constrained label propagation with maximization of similarity-based modularity[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(3):389-396
[26] NEWMAN M E J, GIRVAN M. Finding and evaluating community structure in networks[J]. Physical Review E Statistical Nonlinear and Soft Matter Physics, 2004, 69(2):026113.
[27] NICOSIA V, MANGIONI G, CARCHIOLO V, et al. Extending the definition of modularity to directed graphs with overlapping communities[J]. Journal of Statistical Mechanics Theory and Experiment, 2009(3):3166-3168. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|