| 自动化技术、控制技术 | 
									
										
		  							 | 
          							
		  									  								 
		  									  							    
		  									  								 
		  									  							 | 
        						 
      						 
      					 | 
  					 
  					
    					 | 
   					 
   										
    					| 基于主动学习和加权支持向量机的工业故障识别 | 
  					 
  					  										
						| 朱东阳, 沈静逸, 黄炜平, 梁军 | 
					 
															
					| 浙江大学 控制科学与工程学院,浙江 杭州 310027 | 
					 
										
						 | 
					 
   										
    					| Fault classification based on modified active learning and weighted SVM | 
  					 
  					  					  					
						| ZHU Dong-yang, SHEN Jing-yi, HUANG Wei-ping, LIANG Jun | 
					 
															
						| College of Control Science and Engineering,Zhejiang University,Hangzhou 310027,China | 
					   
									 
				
				
					
						
							
								
									
									
									
									
									 
          
          
            
             
												
												
												
												
												
												引用本文: 
																													
																																朱东阳, 沈静逸, 黄炜平, 梁军. 基于主动学习和加权支持向量机的工业故障识别[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.04.009.
																															 
																																								     												                                                    																													
																																ZHU Dong-yang, SHEN Jing-yi, HUANG Wei-ping, LIANG Jun. Fault classification based on modified active learning and weighted SVM. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.04.009.
																															  
																																										   
												 | 
												 
												 
												
												
												
             
                         
            
									            
									                
																														  
																|   [1] JAIN P, KAPOOR A. Active learning for large multi-class problems\[C\]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009. 
[2] DASGUPTA S. Coarse sample complexity bounds for active learning [J]. Neural Information Processing Systems, 2005, 18: 235-242. 
[3] 唐明珠,阳春华,桂卫华.基于改进的QBC和CS-SVM的故障检测[J].控制与决策,2012, 27(10): 1489-1493. 
TANG Ming-zhu, YANG Chun-hua, GUI Wei-hua. Fault detection based on modified QBC and CS-SVM \[J\]. Control and Decision, 2012, 27(10): 1489-1493. 
[4] YAN Z, CHEN J. Enhancing quality of statistic monitoring models by training set eesign with active learning approach [J]. Chemometrics and Intelligent Laboratory Systems, 2015, 151(2016): 201-218. 
[5] TONG S, KOLLER D. Support vector machine active learning with applications to text classification [J]. Journal of Machine Learning Research, 2012, 2(1):45-66. 
[6] WANG R, KWONG S, CHEN D. Inconsistency-based active learning for support vector machines [J]. Pattern Recognition, 2012, 45(10): 3751-3767. 
[7] 徐海龙,别晓峰,冯卉,等.一种基于QBC的SVM主动学习算法[J].系统工程与电子技术,2015, 37(12): 2865-2871. 
XU Hai-long, BIE Xiao-feng, FENG Hui, et al. Active learning algorithm for SVM based on QBC \[J\]. System Engineering and Electronics, 2015, 37(12): 2865-2871. 
[8] COHN D A, GHAHRAMANI Z, JORDAN M I. Active learning with statistical models [J]. Journal of Artificial Intelligence Research, 1996, 4(1): 705-712. 
[9] 陈荣,曹永锋,孙洪.基于主动学习和半监督学习的多类图像分类 [J]. 自动化学报, 2011, 37(8): 954-962. 
CHEN Rong, CAC Yong-feng, SUN Hong. Multiclass image classification with active learning and semi-supervised learning \[J\]. Acta Automatica Sinica, 2011,37(8): 954-962. 
[10] JOSHI A J, PORIKLI F, PAPANIKOLOPOULOS N. Multi-class active learning for image classification\[C\]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009. 
[11] PERRY T, BADER-EL-DEN M, COOPER S. Imbalanced classification using genetically optimized cost sensitive classifiers\[C\]∥2015 IEEE Congress on Evolutionary Computation. Sendai: IEEE, 2015. 
[12] BURNAEV E, EROFEEV P, PAPANOV A. Influence of resampling on accuracy of imbalanced classification \[C\]∥Proceedings of the 8th International Conference on Machine Vision. Barcelona: \[s.n.\], 2015. 
[13] YANG Y, MA Z, NIE F, et al. Multi-class active learning by uncertainty sampling with diversity maximization [J]. International Journal of Computer Vision, 2015, 113(2): 113-127. 
[14] 施化吉,周书勇,李星毅,等.基于平均密度的孤立点检测研究[J].电子科技大学学报,2007, 36(6): 1286-1288. 
SHI Hua-ji, ZHOU Shu-yong, LI Xing-yi, et al. Average density-based outliers detection \[J\]. Journal of University of Electronic Science and Technology of China, 2007, 36(6): 1286-1288. 
[15] 金鑫,李玉鑑.面向非平衡数据处理的样例惩罚支持向量机 [J]. 武汉大学学报:理学版, 2012, 58(2): 139-143. 
JIN Xin, LI Yu-jian. Support vector machine with example dependent costs for dealing with imbalanced data \[J\]. Journal of Wuhan University: Natural Science Edition, 2012, 58(2): 139-143. 
[16] GE Z, SONG Z, GAO F. Review of recent research on data-based process monitoring [J]. Industrial and Engineering Chemistry Research, 2013, 52(10):3543-3562. 
[17] LIU Y, LIAN J, BARTOLACCI M R, et al. Density-based penalty parameter optimization on C-SVM [J]. The Scientific World Journal, 2014(2014):851814. 
[18] 金鑫,李玉鑑.不平衡支持向量机的惩罚因子选择方法[J].计算机工程与应用,2011,47(33): 129-133. 
JIN Xin, LI Yu-jian. Error-cost selection for biased support vector machines \[J\]. Computer Engineering and Applications, 2011, 47(33): 129-133. 
[19] TAX D M, DUIN R P. Support vector data description [J]. Machine Learning, 2004, 54(1): 45-66. 
[20] DOWNS J J, VOGEL E F. A plant-wide industrial process control problem [J]. Computers and Chemical Engineering, 1993, 17(3): 245-255. 
[21] 石向荣.面向过程监控的非线性特征提取方法研究[D].杭州:浙江大学,2014. 
SHI Xiang-rong. Study on nonlinear feature extraction for process monitoring \[D\]. Hangzhou: Zhejiang University, 2014.  | 
															   
																													 
									             
									           
             
			            			 
			 
             
												
											    	
											        	 | 
											        	Viewed | 
											         
													
											        	 | 
											        	 | 
											         
											      	
												         | 
												        
												        	Full text 
												          	
												         | 
											        	
												        	
												        	 
												        	
												          	 
												          	
												          	
														 | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        
												        	Abstract 
												          	
														 | 
												        
															
															 
															
															
												         | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        Cited  | 
												        
												        	
												         | 
													 
													
												         | 
												         | 
												         | 
													 
													
													    |   | 
													    Shared | 
													       | 
												  	 
												  	
													     | 
													     | 
													     | 
											  		 
											  		
													    |   | 
													    Discussed | 
													       | 
												  	 
											 
											 
             
           
      
									
									
		
									
									
									
									
									
									 | 
								 
							 
						 | 
					 
				 
			
		 |