Please wait a minute...
浙江大学学报(工学版)
自动化技术     
基于图像处理思想的激波捕捉自适应网格方法
张小骏, 刘志镜, 李杰
1.西安电子科技大学 计算机学院,陕西 西安 710071
2.火箭军工程大学 空间工程系,陕西 西安 710025
Adaptive grid method for shock capturing based on image processing technique
ZHANG Xiao jun, LIU Zhi jing, LI Jie
1.School of Computer Science and Technology, Xidian University, Xi’an 710071, China;
2. School of Space Engineering, Rocket Force University of Engineering, Xi’an 710025, China
 全文: PDF(2005 KB)   HTML
摘要:

为了平衡激波的捕捉精度和流场计算效率之间的关系,提出基于图像处理思想的激波捕捉自适应网格方法.将流场计算网格与图像像素类比,以较粗的网格覆盖流场全域,在需要较高分辨率的激波区域将网格进行细分;将算法嵌入到流场求解器中,根据流场求解结果自适应地增加网格密度,反复迭代该过程,直至达到所需的网格分辨率.以某型飞机超音速流动为例,对算法进行验证.结果表明,采用该方法能够有效地捕捉到激波附近的流场信息并在激波区域进行加密,提高了激波的辨识度|在加密区和稀疏区之间的过渡区域,该方法生成的网格更光滑,过渡更平缓,能够有效避免畸形区域的产生.

Abstract:

A new grid adaptive method for shock capturing based on the idea of image processing was proposed in order to balance the relationship between the capturing precision and the computational efficiency of the flow field. An analogy was made between the grid of flow field and the image pixels. The whole flow field was covered by coarse grid and the area where shock occurs will be further subdivided. The division process was embedded into the flow solver, whose computational results helped to adaptively increase the grid density. The above process was repeated until a desired resolution was reached. The proposed method was verified by an example of a certain aircraft. The experimental results show that the proposed method can effectively capture the information of the flow field near the shock and increase its grid density, thus improve the recognition degree of the shock. The grid generated by the proposed method turns out to be smoother in the transition region between the density region and the sparse region, so that the deformed region can be effectively avoided.

出版日期: 2017-01-01
CLC:  TP 301  
基金资助:

 国家自然科学基金资助项目(61173091).

通讯作者: 刘志镜,男,教授.ORCID:0000-0001-7507-9137.     E-mail: liuzhijing@vip.163.com
作者简介: 张小骏(1964—),男,博士生,从事计算视觉的研究.ORCID:0000-0002-8959-9130. E-mail:1479781033@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

张小骏, 刘志镜, 李杰. 基于图像处理思想的激波捕捉自适应网格方法[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.01.011.

ZHANG Xiao jun, LIU Zhi jing, LI Jie. Adaptive grid method for shock capturing based on image processing technique. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.01.011.

[1] BERGER M J. Adaptive mesh refinement for hyperbolic partial differential equations [J]. Journal of Computational Physics, 1984, 53(84): 484-512.
[2] LOHNER R. Adaptive remeshing for transient problems [J]. Computer Methods in Applied Mechanics and Engineering, 1989, 75: 195-214.
[3] 蒋跃文,叶正寅,王刚.基于图像处理思想的自适应网格技术[J].空气动力学学报, 2009,27(6): 713-717.
JIANG Yuewen, YE Zhengyin, WANG Gang. Methods of adaptive unstructured grid based on image process methodology [J]. Acta Aerodynamica Sinica, 2009,27(6): 713-717.
[4] DADONE A, GROSSMAN B. Surface boundary conditions for the numerical solution of the Euler equations [J]. AIAA Journal, 2012, 32(2): 285293.[5] CARAMIA G, DADONE A. A general purpose adjoint formulation for inviscid 2D/3D fluid dynamic optimization [C]∥10th AIAA Multidisciplinary Design Optimization Conference. National Harbor, Maryland: AIAA, 2014: 1174.
[6] DADONE A, GROSSMAN B. Fast convergence of viscous airfoil design problems[J]. AIAA Journal, 2015, 40(10): 1997-2005.
[7] DADONE A, GROSSMAN B. Ghostcell method for inviscid twodimensional flows on Cartesian grids [J]. AIAA Journal, 2012, 42(12): 2499-2507.
[8] DADONE A, GROSSMAN B. Ghostcell method with farfield coarsening and mesh adaptation for Cartesian grids [J]. Computers and Fluids, 2006, 35(7):676-687.
[9] DURBIN P A, IACCARINO G. An approach to local refinement of structured grids [J]. Journal of Computational Physics, 2002, 181(2): 639-653.
[10] WANG Z J, SUN Y. Curvaturebased wall boundary condition for the Euler equations on unstructured grids [J]. AIAA Journal, 2012, 41(1): 2733.
[11] 邹建锋,盛东,邢菲,等.基于各向异性非结构网格的超声速流动自适应计算[J].空气动力学学报, 2013,31(1): 47-51.
ZOU Jianfeng, SHENG Dong, XING Fei, et al. Anisotropic unstructured mesh adaption for supersonic flow simulation [J]. Acta Aerodynamica Sinica, 2013, 31(1): 47-51.
[12] 杜华坤,冯德山,汤井田.基于Delaunay三角形的非结构化有限元GPR正演[J].中南大学学报:自然科学版,2015, 46(4): 1326-1334.
DU Huakun, FENG Deshan, TANG Jingtian. GPR simulation by finite element method of unstructured grid based on Delaunay triangulation [J]. Journal of Central South University: Science and Technology, 2015, 46(4): 1326-1334.
[13] GOYNE C P, RODRIGUEZ C G, KRAUSS R H, et al. Experimental and numerical study of a dualmode scramjet combustor [J]. Journal of Propulsion and Power, 2015, 22(3): 481-489.

[1] 鲁建厦,翟文倩,李嘉丰,易文超,汤洪涛. 基于改进混合蛙跳算法的多约束车辆路径优化[J]. 浙江大学学报(工学版), 2021, 55(2): 259-270.
[2] 程松,邹宗峰. 平面桁架构建的定日镜面形支撑结构优化及实验[J]. 浙江大学学报(工学版), 2020, 54(12): 2310-2320.
[3] 冀俊忠,宋晓妮,杨翠翠. 基于鱼群算法的脑功能连接邻域粗糙集特征归约方法[J]. 浙江大学学报(工学版), 2020, 54(11): 2247-2257.
[4] 付晓峰,牛力,胡卓群,李建军,吴卿. 基于过渡帧概念训练的微表情检测深度网络[J]. 浙江大学学报(工学版), 2020, 54(11): 2128-2137.
[5] 吴其,黄小红,马严,丛群. 复合型日志的模板提取方法[J]. 浙江大学学报(工学版), 2020, 54(8): 1557-1561.
[6] 刘葛辉,陈绍宽,金华,刘爽,彭宏勤. 基于延迟时间模型的不完全检修计划优化模型[J]. 浙江大学学报(工学版), 2020, 54(7): 1298-1307.
[7] 周朝君,黄明辉,陆新江. 基于低维约束嵌入的分布参数系统建模[J]. 浙江大学学报(工学版), 2019, 53(11): 2154-2162.
[8] 徐嘉豪,冀俊忠,杨翠翠. 基于蝙蝠算法的蛋白质网络功能模块检测[J]. 浙江大学学报(工学版), 2019, 53(8): 1618-1629.
[9] 董立岩,金佳欢,方塬程,王越群,李永丽,孙铭会. 基于非负矩阵分解的Slope One算法[J]. 浙江大学学报(工学版), 2019, 53(7): 1349-1353.
[10] 隋昊,覃高峰,崔祥波,陆新江. 基于误差均值与方差最小化的鲁棒T-S模糊建模方法[J]. 浙江大学学报(工学版), 2019, 53(2): 382-387.
[11] 张丽娜, 余阳. 海量O2O服务组合的优化[J]. 浙江大学学报(工学版), 2017, 51(6): 1259-1268.
[12] 毛宜钰, 刘建勋, 胡蓉, 唐明董. 基于Logistic函数和用户聚类的协同过滤算法[J]. 浙江大学学报(工学版), 2017, 51(6): 1252-1258.
[13] 董立岩, 朱琪, 李永丽. 基于最大共识的模型组合算法[J]. 浙江大学学报(工学版), 2017, 51(2): 416-421.
[14] 易树平, 刘觅, 温沛涵. 面向智能车间的工艺规划辅助决策方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1911-1921.
[15] 过晓芳,王宇平,代才. 新的混合分解高维多目标进化算法[J]. 浙江大学学报(工学版), 2016, 50(7): 1313-1321.