能源工程 |
|
|
|
|
水基碳纳米管纳米流体在矩形腔内的自然对流传热 |
楼彬1, 徐旭1, 王文龙1, 王宇飞1, 范利武2, 俞自涛2 |
1. 中国计量学院 计量测试工程学院, 浙江 杭州 310018; 2. 浙江大学 热工与动力系统研究所, 浙江 杭州 310027 |
|
Natural convection heat transfer of aqueous nanofluids with carbon nanotubes in a rectangular enclosure |
LOU Bin1, XU Xu1, WANG Wen-long1, WANG Yu-fei1, FAN Li-wu2, YU Zi-tao2 |
1. College of Metrological and Measurement Engineering, China Jiliang University, Hangzhou 310018, China; 2. Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027, China |
引用本文:
楼彬, 徐旭, 王文龙, 王宇飞, 范利武, 俞自涛2. 水基碳纳米管纳米流体在矩形腔内的自然对流传热[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.12.013.
LOU Bin, XU Xu, WANG Wen-long, WANG Yu-fei, FAN Li-wu, YU Zi-tao. Natural convection heat transfer of aqueous nanofluids with carbon nanotubes in a rectangular enclosure. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.12.013.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.12.013
或
http://www.zjujournals.com/eng/CN/Y2014/V48/I12/2196
|
[1] 宣益民,李强.纳米流体能量传递理论与应用[M].北京:科学出版社, 2010: 14.
[2] 强爱红,许春建,周明.纳米流体对流传热的研究进展[J].化学工程, 2007, 35(11): 74-78.
QIANG Ai-hong, XU Chun-jian, ZHOU Ming. Convective heat transfer of nanofluids research[J]. Chemical Engineering, 2007, 35(11): 74-78.
[3] KHANAFER K, VAFAI K, LIGHTSTONE M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids[J]. International Journal of Heat and Mass Transfer, 2003, 46(19): 3639-3653.
[4] HWANG K S, LEE J H, JANG S P. Buoyancy-driven heat transfer of water-based Al2O3 Nanofluids in a rectangular cavity[J]. International Journal of Heat and Mass Transfer, 2007, 50(19/20): 4003-4010.
[5] OZTOP H F, ABU-NADA E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids[J]. International Journal of Heat and Fluid Flow, 2008, 29(5): 1326-1336.
[6] ABU-NADA E, MASOUD Z, OZTOP H F, et al. Effect of nanofluid variable properties on natural convection in enclosures[J]. International Journal of Thermal Sciences, 2010, 49(3): 479-491.
[7] ABU-NADA E, MASOUD Z, HIJAZI A, et al. Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids[J]. International Communications in Heat and Mass Transfer, 2008, 35(5): 657-665.
[8] NGUYEN C T, DESGRANGES F, ROY G, et al. Temperature and particle-size dependent viscosity data for water-based nanofluids-Hysteresis phenomenon[J]. International Journal of Heat and Fluid Flow, 2007, 28(6): 1492-1506.
[9] YU Zi-tao, XU Xu, HU Ya-cai, et al. Numerical study of transient buoyancy-driven convective heat transfer of water-based nanofluids in a bottom-heated isosceles triangular enclosure[J]. International Journal of Heat and Mass Transfer, 2011, 54(1-3): 526-532.
[10] PUTRA N, ROETZEL W, DAS S K. Natural convection of nano-fluids[J]. Heat and Mass Transfer, 2003, 39 (8/9): 775-784.
[11] WEN Dong-sheng, DING Yu-long. Formulation of nanofluids for natural convective heat transfer applications[J]. International Journal of Heat and Fluid Flow, 2005, 26(6): 855-864.
[12] WEN Dong-sheng, DING Yu-long. Natural convective heat transfer of suspensions of titanium dioxide nanoparticles (Nanofluids)[J]. IEEE Transactions on Nanotechnology, 2006, 5(3): 220-227.
[13] CHANG B H, MILLS A F, HERNANDEZ E. Natural convection of microparticle suspensions in thin enclosures[J]. International Journal of Heat and Mass Transfer, 2008, 51(5/6): 1332-1341.
[14] MAXWELL J C. A Treatise on electricity and magnetism[M]. Oxford: Clarendon Press, 18-81.
[15] HAMILTON R L, CROSSER O K. Thermal conductivity of heterogeneous two-component systems[J]. Industrial and Engineering Chemistry Fundamentals, 1962, 1(3): 187-191.
[16] CHEN Hai-sheng, DING Yu-long, HE Yu-rong, et al. Rheological behaviour of ethylene glycol based titania nanofluids[J]. Chemical Physics Letters, 2007, 444 (4-6): 333-337.
[17] EINSTEIN A. Investigations on the theory of the Brownian movement[M]. New York: Courier Dover Publications, 1956.
[18] BRINKMAN H C. The viscosity of concentrated suspensions and solution[J]. The Journal of Chemical Physics, 1952, 20(4): 571-571.
[19] PAK B C, CHO Y I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[J]. Experimental Heat Transfer: A Journal of Thermal Energy Generation, Transport, Storage, and Conversion, 1998, 11(2): 151-170.
[20] XIE Hua-qing, LEE H, YOUN W, et al. Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities[J]. Journal of Applied Physics, 2003, 94(8): 4967-4971.
[21] PHUOC T X, MASSOUDI M, CHEN R H. Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan[J]. International Journal of Thermal Sciences, 2011, 50 (1): 12-18.
[22] YU Zi-tao, FANG Xin, FAN Li-wu, et al. Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes[J]. Carbon, 2013, 53: 227-285.
[23] HWANG Y, PARK H S, LEE J K, et al. Thermal conductivity and lubrication characteristics of nanofluids[J]. Current Applied Physics, 2006, 6(Supplement 1): e61e71. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|