Please wait a minute...
J4  2010, Vol. 44 Issue (6): 1143-1148    DOI: 10.3785/j.issn.1008-973X.2010.06.017
能源工程     
SiO2纳米流体透射率影响因素实验研究
王辉, 骆仲泱, 蔡洁聪, 王涛, 赵佳飞, 倪明江
浙江大学 清洁能源利用国家重点实验室, 浙江 杭州 310027
Experimental study of influencing factors on transmissivity of SiO2 nanofluids
WANG Hui, LUO Zhong-yang, CAI Jie-cong, WANG Tao,
ZHAO Jia-fei, NI Ming-jiang
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

利用高压微射流法制备了多种SiO2纳米流体,并用分光光度计结合积分球原理测试了不同粒径、不同体积分数及不同光程下SiO2纳米流体在太阳能辐射全波段的透射率.比较实验结果发现,SiO2纳米流体的颗粒粒径,以及其体积分数的不同对纳米流体的透射率有不同程度的影响.通过定制不同厚度的样品池,测试不同光程下SiO2纳米流体的透射率.实验发现:7 nm SiO2纳米流体的透射率随光程的变化仍符合朗伯比尔定律,而40 nm SiO2纳米流体由于颗粒散射加剧导致结果偏离朗伯比尔定律.

Abstract:

High performance nanofluids were produced by a microfluidizer, and a spectrophotometer basing the integral ball principle was used to measure the transmissivity of SiO2 nanofluids in total solar irradiance band with various particle sizes, volume fraction and optical path. By analyzing the experimental results, it was observed that the physical characteristics of nanofluids such as particle sizes, volume fraction and optical path would affect the transmissivity of SiO2 nanofluids. The measurement of the transmissivity of SiO2 nanofluids with different optical path was realized by using different thick sample pools. The results indicated that the transmissivity variation of the 7 nm SiO2 nanofluids with the different optical paths obeyed the LabbertBeer law, however, not happened when the diameter was 40 nm for particle dispersion.

出版日期: 2010-07-16
:     
基金资助:

国家自然科学基金资助项目(50676082);中国博士后科学基金资助项目(20080441248)

通讯作者: 骆仲泱,男,教授.     E-mail: zyluo@cmee.zju.edu.cn
作者简介: 王辉(1985—),女,四川自贡人,硕士生,从事纳米流体物性研究.E-mail: wanghuiwh@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王辉, 骆仲泱, 蔡洁聪, 王涛, 赵佳飞, 倪明江. SiO2纳米流体透射率影响因素实验研究[J]. J4, 2010, 44(6): 1143-1148.

WANG Hui, JIA Zhong-Yang, CA Ji-Cong, WANG Chao, DIAO Jia-Fei, NI Meng-Jiang. Experimental study of influencing factors on transmissivity of SiO2 nanofluids. J4, 2010, 44(6): 1143-1148.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.06.017        http://www.zjujournals.com/eng/CN/Y2010/V44/I6/1143

[1]  CHOI S U S. Enhancing thermal conductivity of fluids with nanoparticles [J]. Developments and Applications of NonNewtonian Flows, 1995, 231: 99105.

[2] XUAN Y M, LI Q. Heat transfer enhancement of nanofluids [J]. International Journal of Heat Fluid flow, 2000, 21(1): 5864.

[3] 李新芳,朱冬生.纳米流体传热性能研究进展与问题[J].化工进展,2006,25(8): 875879.

LI Xinfang, ZHU Dongsheng. Research progress and problems of heattransfer properties of nanofluids [J]. Chemical Industry and Engineering Progress, 2006, 25 (8): 875879.

[4] 朱冬生,吴淑英,李新芳,等.纳米流体工质的基础研究及其蓄冷应用前景[J].化工进展,2008,27(6): 857860.

ZHU Dongsheng, WU Shuying, LI Xinfang, et al. Fundamental investigation and application prospect of cool storage of nanofluids [J]. Chemical Industry and Engineering Progress, 2008 27(6): 857860.

[5] LI Xinfang, ZHU Dongsheng, WANG Xianju, et al. Influence of CTAB on stability of copper nanosuspensions[C]∥ Proceedings of the International Symposium on Biophotonics, Nanophotonics and Metal Materials. Hangzhou, China, 2006: 363366.

[6] LI C H, PETERSON G P. Experimental investigation of temperature and volume of ration variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids) [J]. Journal of Applied Physics, 2006, 99 (8): 08431410843148.

[7] MURSHED S M S, LEONG K C, YANG C. Enhanced thermal conductivity of TiO2water based nanofluids [J]. International Journal of Thermal Sciences, 2005, 44 (4): 367373.

[8] 林璟,方利国.纳米流体强化传热技术及其应用新进展[J].化工展,2008,27(4): 488494.

LIN Cong, FANG Liguo. Recent progress of technology and application of heat transfer enhancement of nanofuilds [J]. Chemical Industry and Engineering Progress, 2008, 27(4): 488494.

[9] 张巧慧,朱华.新型传热工质纳米流体的研究与应用[J]. 能源工程,2006(2): 5254.

ZHANG Qiaohui, ZHU Hua. The investigations and applications of nanofluids [J]. Energy Engineering, 2006(2): 5254.

[10] TAKUYA I, HAJIME I. Radiation force induced by resonant light: from atom to nanoparticle [J]. Journal of Luminescence, 2004, 108: 351354.

[11] MANWAR H, KOICHI N. Control of water absorption and its effect on interlaminar shear strength of CFRC with Al2O3 dispersion [J]. Materials Science and Engineering A, 1999, 272: 264268.

[12] 彭小飞,俞小莉,夏立峰,等.纳米流体悬浮稳定性影响因素[J].浙江大学学报:工学报,2007,41(4): 577580.

PENG Xiaofei, YU Xiaoli, XIA Lifeng, et al. Influence factors on suspension stability of nanofluids [J]. Journal of Zhejiang University: Engineering Science, 2007,41(4): 577580.


[13] 姜未汀,丁国良,王凯建,等.一种基于透射比的纳米流体颗粒团聚定量分析方法[J].上海交通大学学报,2007,41(10): 16481652.

JIANG Weiting, DING Guoliang, WANG Kaijian, et al. A Quantitative analysis method of nanofluids particles aggregation based on transmittance [J]. Journal of Shanghai Jiao tong University, 2007,41(10): 16481652.


[14] BOHREN CF, HUFFMAN DR. Absorption and scattering of light by small particles [M]. New York: Wiley, 1983.


[15] WISCOMBE W J. Improved Mie scattering algorithms [J]. Applied Optics, 1980, 19(9): 15051509.

[1] 宁志华,何乐年,胡志成. 一种高压高可靠性开关电源控制芯片[J]. J4, 2014, 48(3): 377-383.
[2] 李林,陈家旺,顾临怡,王峰. 轴向柱塞泵/马达变量阀配流机构[J]. J4, 2014, 48(1): 29-34.
[3] 陈钊,余锋,陈婷婷. 基于日志结构的闪存均衡回收策略[J]. J4, 2014, 48(1): 92-99.
[4] 蒋湛,姚晓明,林兰芬. 基于特征自适应的本体映射方法[J]. J4, 2014, 48(1): 76-84.
[5] 陈迪仕 ,张宇,李平. 微小型无人直升机地面效应建模[J]. J4, 2014, 48(1): 154-160.
[6] 霍新新,褚金奎,韩冰峰,姚斐.  基于多个压电换能器的接口电路[J]. J4, 2013, 47(11): 2038-2045.
[7] 杨鑫,许端清,杨冰. 基于不规则性的并行计算方法[J]. J4, 2013, 47(11): 2057-2064.
[8] 王玉强,张宽地,陈晓东. 胶黏钢-混凝土组合梁的界面行为数值分析[J]. J4, 2013, 47(9): 1593-1598.
[9] 崔何亮, 张丹, 施斌.  布里渊分布式传感的空间分辨率及标定方法[J]. J4, 2013, 47(7): 1232-1237.
[10] 彭勇,徐小剑. 集料分布对沥青混合料劈裂强度影响数值分析[J]. J4, 2013, 47(7): 1186-1191.
[11] 伍晓榕,裘乐淼,张树有,孙良峰,郭传龙. 模糊语境下的复杂系统关联FMEA方法[J]. J4, 2013, 47(5): 782-789.
[12] 金波,陈诚,李伟. 具有半球形足端的六足机器人步态修正算法[J]. J4, 2013, 47(5): 768-774.
[13] 钟世英, 吴晓君, 蔡武军, 凌道盛, 蒋祝金, 王顺玉. 月面软着陆足垫水平拖曳模型试验装置研制[J]. J4, 2013, 47(3): 465-471.
[14] 袁幸,朱永生,张优云,洪军,祁文昌. 基于正反问题的滚动轴承损伤程度评估[J]. J4, 2012, 46(11): 1960-1967.
[15] 杨飞,朱株,龚小谨,刘济林. 基于三维激光雷达的动态障碍实时检测与跟踪[J]. J4, 2012, 46(9): 1565-1571.