Please wait a minute...
浙江大学学报(工学版)
计算机技术、信息工程     
基于混合势场的移动机器人视觉轨迹规划
丁夏清,杜卓洋,陆逸卿,刘山
浙江大学 控制科学与工程学院,浙江 杭州 310027
Visual trajectory planning for mobile robots based on hybrid artificial potential field
DING Xia qing, DU Zhuo yang, LU Yi qing, LIU Shan
College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1704 KB)   HTML
摘要:

针对载有单目相机的非完整移动机器人,提出基于混合人工势场的能够满足非完整约束的路径规划方法,能够解决移动机器人运行过程中的视野约束问题.在传统人工势场的基础上,提出混合人工势场的概念,势场中一部分是只对角速度起作用的目标点偏转势场和视野约束排斥势场,另一部分是同时影响线速度和角速度的目标位姿吸引势场;其中视野约束排斥势场定义在图像空间内;目标位姿吸引势场和目标点偏转势场定义在笛卡尔空间,利用单应性矩阵三维重建的结果构造势场函数.在混合人工势场的控制下,机器人能够在同时满足视野约束和无侧滑约束的条件下平滑地移动到目标位姿.仿真结果证明了该方法的有效性.

Abstract:

A visual trajectory planning method was proposed based on hybrid artificial potential field for a nonholonomic mobile robot equipped with a monocular camera in consideration of field-of-view (FOV) constraints. A hybrid model was designed based on the concept of conventional artificial potential field. The model consisted of two parts. One part only affects the angular velocity and involves the terms for target deflection and field of view constraints, and the other part affects both the linear velocity and the angular velocity. The potential field for field of view constraints was defined based on the feature point coordinates in the image space. The potential fields for target deflection and the relative pose were calculated based on the scaled three-dimensional reconstruction results obtained from the decomposition of homography. The robot can be regulated to the desired pose with the targets kept in the field of view under the hybrid artificial potential field. Simulation results were provided in some representative circumstances to show the effectiveness of the proposed method.

出版日期: 2016-07-23
:  TP 242  
基金资助:

 国家自然科学基金资助项目(61273133)

通讯作者: 刘山,男,副教授. ORCID:0000-0003-1504-341X.     E-mail: sliu@iipc.zju.edu.cn
作者简介: 丁夏清(1994-),女,本科生,从事视觉伺服的研究. ORCID:0000-0001-7802-0130.E-mail: xqding@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

丁夏清,杜卓洋,陆逸卿,刘山. 基于混合势场的移动机器人视觉轨迹规划[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.07.011.

DING Xia qing, DU Zhuo yang, LU Yi qing, LIU Shan. Visual trajectory planning for mobile robots based on hybrid artificial potential field. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.07.011.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.07.011        http://www.zjujournals.com/eng/CN/Y2016/V50/I7/1298

[1] 贾丙西,刘山,张凯祥,等. 机器人视觉伺服研究进展:视觉系统与控制策略[J]. 自动化学报,2015,41(5): 861-873.
JIA Bingxi, LIU Shan, ZHANG Kaixiang, et al. Survey on robot visual servo control: vision system and control strategies [J]. Acta Automatica Sinica, 2015, 41(5): 861-873.
[2] GONZALO L N, GANS N R, SOURABH B, et al . Homographybased control scheme for mobile robots with nonholonomic and fieldofview constraints [J]. IEEE Transactions on Systems Man and Cybernetics Part B Cybernetics, 2010, 40(4): 1115-1127.
[3] CAO Z C, YIN L J, FU Y L, et al. Predictive control for visual servo stabilization of nonholonomic mobile robots [J]. Acta Automatica Sinica, 2013, 39(8): 1238-1245.
[4] SCHRAMM F, MOREL G. Ensuring visibility in calibrationfree path planning for imagebased vicsual servoing [J]. IEEE Transactions on Robotics, 2006, 22(4): 848-854.
[5] CHESI G, PRATTICHIZZO D, VICINO A. Straight line pathplanning in visual servoing [J]. Journal of Dynamic Systems Measurement and Control Transactions of the ASME, 2007, 129(4): 541-543.
[6] CHESI G. Visual servoing path planning via homogeneous forms and LMI optimizations [J]. IEEE Transactions on Robotics, 2009, 25(2): 281-291.
[7] CHESI G, HUNG Y S. Global pathplanning for constrained and optimal visual servoing [J]. IEEE Transactions on Robotics, 2007, 23(5): 1050-1060.
[8] BORENSTEIN J, KOREN Y. Realtime obstacle avoidance for fast mobile robots [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1989, 19(5): 1179-1187.
[9] 朱毅,张涛,宋靖雁. 非完整移动机器人的人工势场法路径规划[J],控制理论与应用,2010,27(2): 152-158.
ZHU Yi, ZHANG Tao, SONG Jingyan. Path planning for nonholonomic mobile robots using artificial potential field method [J]. Control Theory and Applications,2010, 27(2): 152-158.
[10] FANG Yongchun, ZHANG Xuebo. Adaptive active visual servoing of nonholonomic mobile robots [J]. IEEE Transcations on Industrial Electronics, 2012, 59(1): 486-497.
[11] 李宝全,方勇纯,张雪波.基于2D 三焦点张量的移动机器人视觉伺服镇定控制[J],自动化学报,2014,40(12): 2706-2715.
LI Baoquan, FANG Yongchun, ZHANG Xuebo. 2D trifocal tensor based visual servo regulation of nonholonomic mobilerobots [J].Acta Automatica Sinica, 2014,40(12): 2706-2715.
[12] MEZOUAR Y, CHAUMETTE F. Path planning for robust imagebased control [J]. IEEE Transactions on Robotics and Automation, 2002, 18(4): 534-549.
[13] ZHANG Xuebo, FANG Yongchun, MA Bojun, et al. A fast homography decomposition technique for visual servo of mobile robots [C]∥ Proceedings of the 27th Chinese Control Conference. Beijing: Beihang University Press, 2008: 404-409.
[14] CHAUMETTE F, HUTCHINSON S. Visual servo control. I. basic approaches [J]. IEEE Robotics and Automation Magazine, 2006, 13(4): 82-90.

[1] 高德东, 李强, 雷勇, 徐飞, 白辉全. 基于几何逼近法的斜尖柔性穿刺针运动学研究[J]. 浙江大学学报(工学版), 2017, 51(4): 706-713.
[2] 汤志东, 贠超. 全自动快换装置快速接头技术综述[J]. 浙江大学学报(工学版), 2017, 51(3): 461-470.
[3] 徐显金, 吴龙辉, 杨小俊, 汤亮, 杨永峰. 高压直流巡检机器人的磁力驱动方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1937-1945.
[4] 张湧涛, 宋志伟, 王一, 粘山坡. 基于空间网格的机器人工作点位姿标定方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1980-1986.
[5] 朱雨时,杨灿军,吴世军,徐晓乐,周璞哲,单鑫. 水柱测量中的水下滑翔机转向性能[J]. 浙江大学学报(工学版), 2016, 50(9): 1637-1645.
[6] 贾松敏,卢迎彬,王丽佳,李秀智,徐涛. 分层特征移动机器人行人跟踪[J]. 浙江大学学报(工学版), 2016, 50(9): 1677-1683.
[7] 刘亚男,倪鹤鹏,张承瑞,王云飞,孙好春. 基于PC的运动视觉一体化开放控制平台设计[J]. 浙江大学学报(工学版), 2016, 50(7): 1381-1386.
[8] 张阿龙, 章明, 乔明杰, 朱伟东, 梅标. 基于视觉测量的环形轨底座位姿标定方法[J]. 浙江大学学报(工学版), 2016, 50(6): 1080-1087.
[9] 江文婷, 龚小谨, 刘济林. 基于增量计算的大规模场景致密语义地图构建[J]. 浙江大学学报(工学版), 2016, 50(2): 385-391.
[10] 黄奇伟, 章明, 曲巍崴, 卢贤刚, 柯映林. 机器人制孔姿态优化与光顺[J]. 浙江大学学报(工学版), 2015, 49(12): 2261-2268.
[11] 李巍, 赵志刚, 石广田, 孟佳东. 多机器人并联绳牵引系统的运动学及动力学解[J]. 浙江大学学报(工学版), 2015, 49(10): 1916-1923.
[12] 马子昂,项志宇. 光流测距全向相机的标定与三维重构[J]. 浙江大学学报(工学版), 2015, 49(9): 1651-1657.
[13] 何雪军, 王进, 陆国栋, 陈立. 基于蚁群算法的机器人图像绘制序列优化[J]. 浙江大学学报(工学版), 2015, 49(6): 1139-1145.
[14] 袁康正,朱伟东,陈磊,薛雷,戚文刚. 机器人末端位移传感器的安装位置标定方法[J]. 浙江大学学报(工学版), 2015, 49(5): 829-834.
[15] 付兴伟, 吴功平, 周鹏, 于娜. 基于卡尔曼滤波的巡视机器人能耗估计[J]. 浙江大学学报(工学版), 2015, 49(4): 670-675.