计算机技术、信息工程 |
|
|
|
|
优化多核相关滤波的弱小目标检测前跟踪算法 |
吴晓佳1( ),杨金龙1,2,*( ),赵豪豪1 |
1. 江南大学 人工智能与计算机学院,江苏 无锡 214122 2. 数字化学习技术集成与应用教育部工程研究中心,北京 100039 |
|
Track-before-detect algorithm for weak target based on optimized multi-kernel correlation filtering |
Xiaojia WU1( ),Jinlong YANG1,2,*( ),Haohao ZHAO1 |
1. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China 2. Engineering Research Center of Integration and Application of Digital Learning Technology, Ministry of Education, Beijing 100039, China |
1 |
LUO M, HUANG B, XING W. Detection performance of distributed coherent aperture radar [C]// 24th International Radar Symposium . Berlin: IEEE, 2023: 1-10.
|
2 |
XU C, WANG F, ZHANG Y, et al. Two-level CFAR algorithm for target detection in MmWave radar [C]// International Conference on Computer Engineering and Application . Kunming: IEEE, 2021: 240-243.
|
3 |
TERKI Z, CHEBBARA F, MEZACHE A. Analysis of non-coherent CFAR detectors in sea-clutter: a comparison [C]// 6th IEEE Congress on Information Science and Technology . Agadir: IEEE, 2021: 401-406.
|
4 |
FAN Y, TAO M, SU J Multifractal correlation analysis of autoregressive spectrum-based feature learning for target detection within sea clutter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1- 11
|
5 |
CHEN X, YU X, HUANG Y, et al Adaptive clutter suppression and detection algorithm for radar maneuvering target with high-order motions via sparse fractional ambiguity function[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1515- 1526
doi: 10.1109/JSTARS.2020.2981046
|
6 |
温竹鹏, 陈捷, 刘连华, 等 基于小波变换和优化CNN的风电齿轮箱故障诊断[J]. 浙江大学学报: 工学版, 2022, 56 (6): 1212- 1219 WEN Zhupeng, CHEN Jie, LIU Lianhua, et al Fault diagnosis of wind power gearbox based on wavelet transform and improved CNN[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (6): 1212- 1219
|
7 |
WALENCZYKOWSKA M, KAWALEC A. Radar signal recognition using wavelet transform and machine learning [C]// 23rd International Radar Symposium . Gdansk: IEEE, 2022: 492-495.
|
8 |
WANG J H, YI W, KIRRUBARAJAN T, et al An efficient recursive multiframe track-before-detect algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54 (1): 190- 204
doi: 10.1109/TAES.2017.2741898
|
9 |
ZHANG D, LI W, YANG S, et al. Multi-frame track-before-detect for scalable extended target tracking [C]// 25th International Conference on Information Fusion . Linköping: IEEE, 2022: 1-8.
|
10 |
ZHU C, DENG J, LONG X, et al. DBU-net based robust target detection for multi-frame track-before-detect method [C]// 11th International Conference on Control, Automation and Information Sciences . Hanoi: IEEE, 2022: 412-418.
|
11 |
KIM D Y, RISTIC B, GUAN R, et al A bernoulli track-before-detect filter for interacting targets in maritime radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57 (3): 1981- 1991
doi: 10.1109/TAES.2021.3054715
|
12 |
QIN S, DING J, WEN L, et al Joint track-before-detect algorithm for high-maneuvering target indication in video SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 8236- 8248
doi: 10.1109/JSTARS.2021.3104603
|
13 |
DAVEY S J, RUTTEN M G, CHEUNG B. A comparison of detection performance for several track-before-detect algorithms [C]// 11th International Conference on Information Fusion . Cologne: IEEE, 2008: 1–8.
|
14 |
HENRIQUES J F, CASEIRO R, MARTINS P, et al High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (3): 583- 596
doi: 10.1109/TPAMI.2014.2345390
|
15 |
ZHOU Y, WANG T, HU R, et al Multiple kernelized correlation filters (MKCF) for extended object tracking using X-band marine radar data[J]. IEEE Transactions on Signal Processing, 2019, 67 (14): 3676- 3688
doi: 10.1109/TSP.2019.2917812
|
16 |
ZHOU Y, SU H, TIAN S, et al Multiple-kernelized-correlation-filter-based track-before-detect algorithm for tracking weak and extended target in marine radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58 (4): 3411- 3426
doi: 10.1109/TAES.2022.3150262
|
17 |
GU Z, PENG H, WEI B, et al. Research on infrared small target detection algorithm based on YOLOv5 and enhanced KCF algorithm with Kalman filter [C]// IEEE 5th International Conference on Power, Intelligent Computing and Systems . Shenyang: IEEE, 2023: 417-422.
|
18 |
LEI H, MA J, LU X. Target tracking method based on the fusion of structured SVM and KCF algorithm [C]// Chinese Control and Decision Conference . Hefei: IEEE, 2020: 1174-1178.
|
19 |
TANG M, FENG J. Multi-kernel correlation filter for visual tracking [C]// IEEE International Conference on Computer Vision . Santiago: IEEE, 2016: 3038-3046.
|
20 |
孙菲, 厉小润, 赵辽英, 等 基于FrFT变换和全变分正则化的异常检测算法[J]. 浙江大学学报: 工学版, 2022, 56 (7): 1276- 1284 SUN Fei, LI Xiaorun, ZHAO Liaoying, et al Anomaly detection algorithm based on FrFT transform and total variation regularization[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (7): 1276- 1284
|
21 |
MEDEIROS D S, ALMEIDA GARCÍA F D, MACHADO R, et al CA-CFAR performance in K-distributed sea clutter with fully correlated texture[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1- 5
|
22 |
薛健, 孙孟玲, 潘美艳 基于支持向量回归和分位数的雷达K分布海杂波形状参数估计方法[J]. 电子与信息学报, 2022, 44 (12): 1- 9 XUE Jian, SUN Mengling, PAN Meiyan Shape parameter estimation of radar K-distributed sea clutter based on support vector regression and percentiles[J]. Journal of Electronics and Information Technology, 2022, 44 (12): 1- 9
|
23 |
NEUIMIN O S, ZHUK S Y, TOVKACH I O, et al. Analysis of the small UAV trajectory detection algorithm based on the “l/n-d” criterion using Kalman filtering due to FMCW radar data [C]// IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering . Lviv: IEEE, 2022: 741-745.
|
24 |
BAO Z C, JIANG Q X, LLU F Z Multiple model efficient particle filter based track-before-detect for maneuvering weak targets[J]. Journal of Systems Engineering and Electronics, 2020, 31 (4): 647- 656
doi: 10.23919/JSEE.2020.000040
|
25 |
VAQUERO L, MUCIENTES M, BREA V M. SiamMT: real-time arbitrary multi-object tracking [C]// 25th International Conference on Pattern Recognition . Italy: IEEE, 2021: 1051-4651.
|
26 |
KANG W J, XLE C Q, YAO J L, et al. Online multiple object tracking with recurrent neural networks and appearance model [C]// 13th International Congress on Image and Signal Processing , BioMedical Engineering and Informatics . Chengdu: IEEE, 2020: 34-38.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|