| 计算机技术 |
|
|
|
|
| 基于强化学习的Kubernetes云边协同计算调度算法 |
汤佳伟1( ),郭铁铮1,闻英友1,2,*( ) |
1. 东北大学 计算机科学与工程学院,辽宁 沈阳 110819 2. 东软集团股份有限公司,辽宁 沈阳 110179 |
|
| Reinforcement learning-based scheduling algorithm for cloud-edge collaborative computing on Kubernetes |
Jiawei TANG1( ),Tiezheng GUO1,Yingyou WEN1,2,*( ) |
1. School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China 2. Neusoft Group Limited Company, Shenyang 110179, China |
| 1 |
王凌, 吴楚格, 范文慧, 等 边缘计算资源分配与任务调度优化综述[J]. 系统仿真学报, 2021, 33 (3): 509- 520 WANG Ling, WU Chuge, FAN Wenhui, et al A survey of edge computing resource allocation and task scheduling optimization[J]. Journal of System Simulation, 2021, 33 (3): 509- 520
|
| 2 |
施巍松, 张星洲, 王一帆, 等 边缘计算: 现状与展望[J]. 计算机研究与发展, 2019, 56 (1): 69- 89 SHI Weisong, ZHANG Xingzhou, WANG Yifan, et al Edge computing: state-of-the-art and future directions[J]. Journal of Computer Research and Development, 2019, 56 (1): 69- 89
doi: 10.7544/issn1000-1239.2019.20180760
|
| 3 |
KHAN W Z, AHMED E, HAKAK S, et al Edge computing: a survey[J]. Future Generation Computer Systems, 2019, 97: 219- 235
doi: 10.1016/j.future.2019.02.050
|
| 4 |
ERMOLENKO D, KILICHEVA C, MUTHANNA A, et al. Internet of things services orchestration framework based on Kubernetes and edge computing [C]//IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering. Moscow: IEEE, 2021: 12-17. ERMOLENKO D, KILICHEVA C, MUTHANNA A, et al. Internet of things services orchestration framework based on Kubernetes and edge computing [C]//IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering. Moscow: IEEE, 2021: 12-17.
|
| 5 |
VARGHESE B, WANG N, BARBHUIYA S, et al. Challenges and opportunities in edge computing [C]//IEEE International Conference on Smart Cloud. New York: IEEE, 2016: 20-26. VARGHESE B, WANG N, BARBHUIYA S, et al. Challenges and opportunities in edge computing [C]//IEEE International Conference on Smart Cloud. New York: IEEE, 2016: 20-26.
|
| 6 |
SHI W, CAO J, ZHANG Q, et al Edge computing: vision and challenges[J]. IEEE Internet of Things Journal, 2016, 3 (5): 637- 646
|
| 7 |
BHARDWAJ A, KRISHNA C R Virtualization in cloud computing: moving from hypervisor to containerization: a survey[J]. Arabian Journal for Science and Engineering, 2021, 46 (9): 8585- 8601
|
| 8 |
QIU T, CHI J, ZHOU X, et al Edge computing in industrial internet of things: architecture, advances and challenges[J]. IEEE Communications Surveys and Tutorials, 2020, 22 (4): 2462- 2488
|
| 9 |
NING H, LI Y, SHI F, et al Heterogeneous edge computing open platforms and tools for internet of things[J]. Future Generation Computer Systems, 2020, 106: 67- 76
|
| 10 |
SATYANARAYANAN M, BAHL P, CACERES R, et al The case for vm-based cloudlets in mobile computing[J]. IEEE Pervasive Computing, 2009, 8 (4): 14- 23
|
| 11 |
ZHANG M, CAO J, YANG L, et al. Ents: an edge-native task scheduling system for collaborative edge computing [C]//IEEE/ACM 7th Symposium on Edge Computing. Seattle: IEEE, 2022: 149-161.
|
| 12 |
ZHANG M, CAO J, SAHNI Y, et al. Eaas: a service-oriented edge computing framework towards distributed intelligence [C]//IEEE International Conference on Service-Oriented System Engineering. Newark: IEEE, 2022: 165-175.
|
| 13 |
HAN R, WEN S, LIU C H, et al. EdgeTuner: fast scheduling algorithm tuning for dynamic edge-cloud workloads and resources [C]//IEEE Conference on Computer Communications. London: IEEE, 2022: 880-889.
|
| 14 |
SHAN C, GAO R, HAN Q, et al KCES: a workflow containerization scheduling scheme under cloud-edge collaboration framework[J]. IEEE Internet of Things Journal, 2024, 12 (2): 2026- 2042
|
| 15 |
SAHNI Y, CAO J, YANG L Data-aware task allocation for achieving low latency in collaborative edge computing[J]. IEEE Internet of Things Journal, 2018, 6 (2): 3512- 3524
|
| 16 |
SHAN C, WANG G, XIA Y, et al. Containerized workflow builder for Kubernetes [C]//IEEE 23rd International Conference on High Performance Computing and Communications; 7th International Conference on Data Science and Systems; 19th International Conference on Smart City; 7th International Conference on Dependability in Sensor, Cloud and Big Data Systems and Application. Haikou: IEEE, 2021: 685-692. SHAN C, WANG G, XIA Y, et al. Containerized workflow builder for Kubernetes [C]//IEEE 23rd International Conference on High Performance Computing and Communications; 7th International Conference on Data Science and Systems; 19th International Conference on Smart City; 7th International Conference on Dependability in Sensor, Cloud and Big Data Systems and Application. Haikou: IEEE, 2021: 685-692.
|
| 17 |
SHAN C, XIA Y, ZHAN Y, et al KubeAdaptor: a docking framework for workflow containerization on Kubernetes[J]. Future Generation Computer Systems, 2023, 148: 584- 599
|
| 18 |
BADER J, THAMSEN L, KULAGINA S, et al. Tarema: adaptive resource allocation for scalable scientific workflows in heterogeneous clusters [C]//IEEE International Conference on Big Data. Orlando: IEEE, 2021: 65-75.
|
| 19 |
GAREFALAKIS P, KARANASOS K, PIETZUCH P, et al. Medea: scheduling of long running applications in shared production clusters [C]//European Conference on Computer Systems. New York: ACM, 2018: 1-13.
|
| 20 |
HAO Y, JIANG Y, CHEN T, et al iTaskOffloading: intelligent task offloading for a cloud-edge collaborative system[J]. IEEE Network, 2019, 33 (5): 82- 88
|
| 21 |
GUO K, YANG M, ZHANG Y, et al Joint computation offloading and bandwidth assignment in cloud-assisted edge computing[J]. IEEE Transactions on Cloud Computing, 2019, 10 (1): 451- 460
|
| 22 |
YANG L, YANG D, CAO J, et al QoS guaranteed resource allocation for live virtual machine migration in edge clouds[J]. IEEE Access, 2020, 8: 78441- 78451
|
| 23 |
TAN B, MA H, MEI Y, et al A cooperative coevolution genetic programming hyper-heuristics approach for on-line resource allocation in container-based clouds[J]. IEEE Transactions on Cloud Computing, 2020, 10 (3): 1500- 1514
|
| 24 |
VERMA A, PEDROSA L, KORUPOLU M, et al. Large-scale cluster management at Google with Borg [C]//Proceedings of the 10th European Conference on Computer Systems. New York: ACM, 2015: 1-17.
|
| 25 |
XIONG Y, SUN Y, XING L, et al. Extend cloud to edge with Kubeedge [C]//IEEE/ACM Symposium on Edge Computing. Seattle: IEEE, 2018: 373-377. XIONG Y, SUN Y, XING L, et al. Extend cloud to edge with Kubeedge [C]//IEEE/ACM Symposium on Edge Computing. Seattle: IEEE, 2018: 373-377.
|
| 26 |
DUPONT C, GIAFFREDA R, CAPRA L. Edge computing in IoT context: horizontal and vertical Linux container migration [C]//Global Internet of Things Summit. Geneva: IEEE, 2017: 1-4.
|
| 27 |
GOETHALS T, DE TURCK F, VOLCKAERT B. Fledge: Kubernetes compatible container orchestration on low-resource edge devices [C]//International Conference on Internet of Vehicles. Cham: Springer, 2019: 174-189.
|
| 28 |
LIU N, LI Z, XU J, et al. A hierarchical framework of cloud resource allocation and power management using deep reinforcement learning [C]//IEEE 37th International Conference on Distributed Computing Systems. Atlanta: IEEE, 2017: 372-382.
|
| 29 |
MAO H, ALIZADEH M, MENACHE I, et al. Resource management with deep reinforcement learning [C]//Proceedings of the 15th ACM Workshop on Hot Topics in Networks. New York: ACM, 2016: 50-56.
|
| 30 |
YI D, ZHOU X, WEN Y, et al Efficient compute-intensive job allocation in data centers via deep reinforcement learning[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 31 (6): 1474- 1485
|
| 31 |
MAO H, SCHWARZKOPF M, VENKATAKRISHNAN S B, et al. Learning scheduling algorithms for data processing clusters [C]//Proceedings of the ACM Special Interest Group on Data Communication. New York: ACM, 2019: 270-288. MAO H, SCHWARZKOPF M, VENKATAKRISHNAN S B, et al. Learning scheduling algorithms for data processing clusters [C]//Proceedings of the ACM Special Interest Group on Data Communication. New York: ACM, 2019: 270-288.
|
| 32 |
邝祝芳, 陈清林, 李林峰, 等 基于深度强化学习的多用户边缘计算任务卸载调度与资源分配算法[J]. 计算机学报, 2022, 45 (4): 812- 824 KUANG Zhufang, CHEN Qinglin, LI Linfeng, et al Multi-user edge computing task offloading scheduling and resource allocation based on deep reinforcement learning[J]. Chinese Journal of Computers, 2022, 45 (4): 812- 824
doi: 10.11897/SP.J.1016.2022.00812
|
| 33 |
周陈静, 骆淑云 基于深度强化学习的实时视频边缘卸载策略[J]. 智能计算机与应用, 2024, 14 (8): 32- 39 ZHOU Chenjing, LUO Shuyun Computation offloading decision in video edge computing based on deep reinforcement learning[J]. Intelligent Computer and Applications, 2024, 14 (8): 32- 39
|
| 34 |
张斐斐, 葛季栋, 李忠金, 等 边缘计算中协作计算卸载与动态任务调度[J]. 软件学报, 2023, 34 (12): 5737- 5756 ZHANG Feifei, GE Jidong, LI Zhongjin, et al Cooperative computation offloading and dynamic task scheduling in edge computing[J]. Journal of Software, 2023, 34 (12): 5737- 5756
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|