Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (10): 2023-2033    DOI: 10.3785/j.issn.1008-973X.2025.10.003
机械工程     
智能叉车密集仓储系统料框出库翻箱问题研究
李子龙1,2(),程天健3,金波4,程文明1,2,曹轶伦1,2,郭鹏1,2,*()
1. 西南交通大学 机械工程学院,四川 成都 610031
2. 轨道交通运维技术与装备四川省重点实验室,四川 成都 610031
3. 西南交通大学 地球科学与工程学院,四川 成都 611756
4. 深圳大学 管理学院,广东 深圳 518055
Study on bin relocation problem during outbound operation in intelligent forklift-based dense storage system
Zilong LI1,2(),Tianjian CHENG3,Bo JIN4,Wenming CHENG1,2,Yilun CAO1,2,Peng GUO1,2,*()
1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
2. Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province, Chengdu 610031, China
3. Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China
4. College of Management, Shenzhen University, Shenzhen 518055, China
 全文: PDF(1107 KB)   HTML
摘要:

为了提高智能叉车密集仓储系统作业效率,针对出库作业时的料框翻箱问题,以最小化料框翻箱次数为目标,定义相关约束条件并构建数学规划模型,提出快速求解料框翻箱方案的启发式方法. 给出该问题下界的计算方法,构建分支定界算法以求得理论最优解. 在堆料区布局和出库量不同的情况下,随机生成大量算例进行数值分析. 计算结果表明,在小规模算例中,启发式方法和分支定界算法都具有高效求解能力;在中大规模算例中,启发式方法能够快速获得较为合理的可行解,分支定界算法能够在较短时间内对初始翻箱方案进行优化并给出近似最优解. 相比随机翻箱策略,分支定界算法在翻箱次数上平均减少了43.32%,验证了该算法的有效性和实用性. 通过对比不同仓储设备的性能发现,前移式叉车比普通叉车平均减少了8.59%的翻箱次数.

关键词: 智能叉车密集仓储系统料框翻箱问题数学规划模型启发式方法分支定界算法    
Abstract:

The bin relocation problem during outbound operations was studied to improve the operational efficiency of the intelligent forklift-based dense storage system. A mathematical programming model was developed with defined constraints, aiming to minimize the number of bin relocations. A heuristic method was proposed to generate bin relocation strategies rapidly. A method for obtaining the lower bound was provided, and a branch-and-bound algorithm was constructed to achieve the theoretically optimal solution. Numerical experiments were conducted based on numerous instances generated under different storage area layouts and retrieval volumes. Results showed that both the heuristic method and the branch-and-bound algorithm were highly efficient for small-scale cases. For medium and large-scale cases, the heuristic method promptly generated reasonably feasible solutions, while the branch-and-bound algorithm effectively optimized the initial relocation scheme within a short timeframe, yielding near-optimal solutions. Compared with random relocation strategies, the branch-and-bound algorithm reduced the number of relocations by an average of 43.32%, verifying the effectiveness and practicability of the algorithm. A performance analysis of different warehousing equipment revealed that forward-moving forklifts reduced the number of relocations by an average of 8.59% compared to ordinary forklifts.

Key words: intelligent forklift-based dense storage system    bin relocation problem    mathematical programming model    heuristic method    branch-and-bound algorithm
收稿日期: 2024-09-06 出版日期: 2025-10-27
CLC:  TP 391  
基金资助: 教育部人文社科项目(21YJC630034);国家自然科学基金青年科学基金资助项目(72101160).
通讯作者: 郭鹏     E-mail: 2548383665@qq.com;pengguo318@swjtu.edu.cn
作者简介: 李子龙(2000—),男,硕士生,从事仓储物流调度研究. orcid.org/0009-0001-1231-3587. E-mail:2548383665@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李子龙
程天健
金波
程文明
曹轶伦
郭鹏

引用本文:

李子龙,程天健,金波,程文明,曹轶伦,郭鹏. 智能叉车密集仓储系统料框出库翻箱问题研究[J]. 浙江大学学报(工学版), 2025, 59(10): 2023-2033.

Zilong LI,Tianjian CHENG,Bo JIN,Wenming CHENG,Yilun CAO,Peng GUO. Study on bin relocation problem during outbound operation in intelligent forklift-based dense storage system. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2023-2033.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.10.003        https://www.zjujournals.com/eng/CN/Y2025/V59/I10/2023

图 1  智能叉车密集仓储系统仓库布局示意图
图 2  堆料区料框堆存状态示意图
图 3  出库路径选取示意图
符号定义
$ A=\{\mathrm{1,2},3,\cdots ,N\} $料框序号集合;$ n $为索引,共有$ N $个料框,须取出前$ M $个料框$ (M\leqslant N) $
$ B=\{\mathrm{1,2},3,\cdots ,S\} $堆料区中堆栈编号集合;$ i、{i}{'}、k、k{'} $为索引,共有$ S $个堆栈
$ C=\{\mathrm{1,2},3,\cdots ,H\} $料框所在储位的层高集合;$ j、{j}{'}、l、l{'} $为索引,共有$ H $
$ D=\{\mathrm{0,1},2,\cdots ,T\} $操作阶段集合;每个阶段有且仅有1个料框被检索,$ t、{t}{'} $为索引,共有$ T(T=M) $个阶段
$ {E}_{t} $$ t $阶段目标料框出库路径上堆栈的集合
$ \lambda $极大的正整数
$ Z $完成料框出库任务所需的最小翻箱次数
$ {x}_{ijn}^{t} $0-1决策变量;1表示料框$ n $在第$ t $阶段后位于堆料区位置$ (i,j) $,否则为0
$ {v}_{n}^{t} $0-1决策变量;1表示料框$ n $在第$ t $阶段后已经完成出库作业,否则为0
$ {y}_{ij{i}{{'}}{j}{{'}}n}^{t} $0-1决策变量;1表示料框$ n $在第$ t $阶段时从储位$ (i,j) $翻箱至$ ({i}{'},{j}{'}) $,否则为0
$ {r}_{ijn}^{t} $0-1决策变量;1表示料框$ n $在第$ t $阶段时从储位$ (i,j) $出库,否则为0
表 1  智能叉车密集仓储系统翻箱问题的模型符号定义
编号堆料区布局料框数量出库需求阻塞料框数量下界启发式分支定界topt/s
Rta/sRta/s
13×3×527157.78.08.60.0008.60.0000.000
23×4×5361511.512.012.20.00012.20.0000.000
33×4×5362012.813.714.80.00014.40.0090.009
43×5×5452013.513.615.70.00115.24.0414.041
53×5×5453015.216.618.10.00117.72.0132.013
63×5×5603025.627.830.80.00129.545.29415.303
73×6×5543020.821.524.30.00123.062.4082.445
83×7×5633020.120.522.20.00121.963.7583.758
93×7×5634022.522.926.10.00124.9104.01614.016
104×4×5482016.516.819.40.00118.683.93034.015
114×4×5642020.220.523.80.00023.361.2132.142
124×4×5643025.426.132.50.00131.4162.56615.585
134×5×5602015.015.118.40.00017.686.92027.048
144×5×5604019.620.426.40.00024.3157.92924.584
表 2  中小规模算例下2种算法的求解结果与耗时
编号堆料区布局料框数量出库需求阻塞料框数量下界启发式分支定界topt/s
Rta/sRta/s
13×6×5723029.129.933.80.00133.4159.0809.077
23×6×5724531.732.739.70.00236.5226.80336.905
33×7×5843028.728.734.30.00132.9240.1325.126
43×7×5845036.638.145.70.00143.3270.00119.631
53×8×5723019.520.023.80.00123.2173.23723.263
63×8×5725025.125.729.90.00129.2275.4775.544
73×8×5964038.839.144.00.00143.4216.44135.452
84×5×5803027.027.335.40.00033.2270.00213.818
94×5×5805036.638.548.80.00145.4252.59419.495
104×6×5725027.529.337.30.00136.3>3001.845
114×6×5963031.732.040.30.00139.0>30015.245
124×6×5966041.943.755.40.00152.8>30024.755
134×7×51123536.537.046.20.00144.6>30010.904
144×7×51127050.551.467.10.00263.7>30022.282
表 3  大规模算例下2种算法的求解结果与耗时
图 4  不同规模算例下4种翻箱方法的性能对比
图 5  不同规模算例下2种仓储设备的性能对比
1 BOYSEN N, DE KOSTER R, WEIDINGER F Warehousing in the e-commerce era: a survey[J]. European Journal of Operational Research, 2019, 277 (2): 396- 411
doi: 10.1016/j.ejor.2018.08.023
2 李勇昭 2022年中国仓储业发展回顾与2023年展望[J]. 中国储运, 2023, (4): 21- 23
LI Yongzhao Review of the development of China’s warehousing industry in 2022 and prospects for 2023[J]. China Storage and Transport, 2023, (4): 21- 23
3 易兵. 中国智能仓储发展与趋势展望 [R]//中国仓储与配送协会. 2022年中国仓储配送行业发展报告. 北京: 中国商业出版社, 2022: 79–94.
4 周亚勤, 汪俊亮, 吕志军, 等 密集仓储环境下多AGV/RGV调度方法研究[J]. 机械工程学报, 2021, 57 (10): 245- 256
ZHOU Yaqin, WANG Junliang, LÜ Zhijun, et al Research on multi-AGV/RGV scheduling method in intensive storage environment[J]. Journal of Mechanical Engineering, 2021, 57 (10): 245- 256
doi: 10.3901/JME.2021.10.245
5 何昕杰, 周少武, 张红强, 等 基于改进遗传算法的四向穿梭车系统订单排序优化[J]. 系统仿真学报, 2021, 33 (9): 2166- 2179
HE Xinjie, ZHOU Shaowu, ZHANG Hongqiang, et al Order sorting optimization for four-way shuttle system based on improved genetic algorithm[J]. Journal of System Simulation, 2021, 33 (9): 2166- 2179
6 余嘉雄, 白红星 基于改进A*算法的四向穿梭车路径规划[J]. 机械与电子, 2022, 40 (7): 54- 60
YU Jiaxiong, BAI Hongxing Four-way shuttle vehicle path planning based on improved A* algorithm[J]. Machinery and Electronics, 2022, 40 (7): 54- 60
7 KÜBLER P, GLOCK C H, BAUERNHANSL T A new iterative method for solving the joint dynamic storage location assignment, order batching and picker routing problem in manual picker-to-parts warehouses[J]. Computers and Industrial Engineering, 2020, 147: 106645
doi: 10.1016/j.cie.2020.106645
8 AZADEH K, DE KOSTER R, ROY D Robotized and automated warehouse systems: review and recent developments[J]. Transportation Science, 2019, 53 (4): 917- 945
doi: 10.1287/trsc.2018.0873
9 张牧仁, 项前, 吕志军, 等 面向低能耗的密集仓储货位分配优化[J]. 东华大学学报: 自然科学版, 2023, 49 (5): 88- 96
ZHANG Muren, XIANG Qian, LYU Zhijun, et al Optimization of storage location assignment in compact storage and retrieval system for low energy consumption[J]. Journal of Donghua University: Natural Science, 2023, 49 (5): 88- 96
10 马云峰, 盛聪, 杨习杰, 等. 基于改进A*算法的四向穿梭车系统出库翻箱优化[EB/OL]. (2023–10–09)[2024–01–09]. https://doi.org/10.16381/j.cnki.issn1003-207x.2023.0911.
11 许丽丽, 詹燕, 鲁建厦, 等 四向穿梭车仓储系统复合作业调度优化[J]. 浙江大学学报: 工学版, 2023, 57 (11): 2188- 2199
XU Lili, ZHAN Yan, LU Jiansha, et al Compound operation scheduling optimization in four-way shuttle warehouse system[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (11): 2188- 2199
12 占翔南, 徐立云, 凌旭峰, 等 多深度四向穿梭车仓储系统调度优化[J]. 计算机集成制造系统, 2022, 28 (8): 2496- 2507
ZHAN Xiangnan, XU Liyun, LING Xufeng, et al Scheduling optimization of multi-deep four-way shuttle warehousing system[J]. Computer Integrated Manufacturing Systems, 2022, 28 (8): 2496- 2507
13 ROY D, KRISHNAMURTHY A, HERAGU S, et al Queuing models to analyze dwell-point and cross-aisle location in autonomous vehicle-based warehouse systems[J]. European Journal of Operational Research, 2015, 242 (1): 72- 87
doi: 10.1016/j.ejor.2014.09.040
14 CARLO H J, VIS I F A, ROODBERGEN K J Storage yard operations in container terminals: literature overview, trends, and research directions[J]. European Journal of Operational Research, 2014, 235 (2): 412- 430
doi: 10.1016/j.ejor.2013.10.054
15 LEHNFELD J, KNUST S Loading, unloading and premarshalling of stacks in storage areas: survey and classification[J]. European Journal of Operational Research, 2014, 239 (2): 297- 312
doi: 10.1016/j.ejor.2014.03.011
16 KIM K H, HONG G P A heuristic rule for relocating blocks[J]. Computers and Operations Research, 2006, 33 (4): 940- 954
doi: 10.1016/j.cor.2004.08.005
17 ZHU W, QIN H, LIM A, et al Iterative deepening A* algorithms for the container relocation problem[J]. IEEE Transactions on Automation Science and Engineering, 2012, 9 (4): 710- 722
doi: 10.1109/TASE.2012.2198642
18 TANAKA S, TAKII K A faster branch-and-bound algorithm for the block relocation problem[J]. IEEE Transactions on Automation Science and Engineering, 2016, 13 (1): 181- 190
doi: 10.1109/TASE.2015.2434417
19 CASERTA M, SCHWARZE S, VOß S A mathematical formulation and complexity considerations for the blocks relocation problem[J]. European Journal of Operational Research, 2012, 219 (1): 96- 104
doi: 10.1016/j.ejor.2011.12.039
20 EXPÓSITO-IZQUIERDO C, MELIÁN-BATISTA B, MORENO-VEGA J M An exact approach for the blocks relocation problem[J]. Expert Systems with Applications, 2015, 42 (17/18): 6408- 6422
21 ESKANDARI H, AZARI E Notes on mathematical formulation and complexity considerations for blocks relocation problem[J]. Scientia Iranica E, 2015, 22 (6): 2722- 2728
22 ZEHENDNER E, CASERTA M, FEILLET D, et al An improved mathematical formulation for the blocks relocation problem[J]. European Journal of Operational Research, 2015, 245 (2): 415- 422
doi: 10.1016/j.ejor.2015.03.032
23 JOVANOVIC R, VOß S A chain heuristic for the blocks relocation problem[J]. Computers and Industrial Engineering, 2014, 75: 79- 86
doi: 10.1016/j.cie.2014.06.010
24 JIN B, ZHU W, LIM A Solving the container relocation problem by an improved greedy look-ahead heuristic[J]. European Journal of Operational Research, 2015, 240 (3): 837- 847
doi: 10.1016/j.ejor.2014.07.038
25 杨小明, 周云鹏, 耿志康, 等 基于规则集定向搜索算法的装船翻箱问题[J]. 计算机集成制造系统, 2023, 29 (3): 1040- 1054
YANG Xiaoming, ZHOU Yunpeng, GENG Zhikang, et al Loading relocation problem based on rule set based beam search algorithm[J]. Computer Integrated Manufacturing Systems, 2023, 29 (3): 1040- 1054
26 张艳伟, 蔡梦蝶 基于逆向强化学习的装船时堆场翻箱智能决策[J]. 同济大学学报: 自然科学版, 2021, 49 (10): 1417- 1425
ZHANG Yanwei, CAI Mengdie An inverse reinforcement learning method for container relocation in container terminal yard during loading[J]. Journal of Tongji University: Natural Science, 2021, 49 (10): 1417- 1425
27 JIN B, TANAKA S An exact algorithm for the unrestricted container relocation problem with new lower bounds and dominance rules[J]. European Journal of Operational Research, 2023, 304 (2): 494- 514
doi: 10.1016/j.ejor.2022.04.006
[1] 裴植, 张雪芳, 陆海旻, 杜蕊, 鲁建厦. 多阶段连续型柔性制药车间调度[J]. 浙江大学学报(工学版), 2018, 52(12): 2253-2261.