机械工程 |
|
|
|
|
基于加权融合矩阵系统聚类的多机床温度测点选择方法 |
邓小雷1( ),陈昱珅2,方诚至1,门大厦1,林晓亮1,姜少飞2 |
1. 衢州学院 浙江省空气动力装备技术重点实验室,浙江 衢州 324000 2. 浙江工业大学 机械工程学院,浙江 杭州 310023 |
|
Temperature measurement point selection method of multi-machine tool based on weighted fusion matrix system clustering |
Xiao-lei DENG1( ),Yu-shen CHEN2,Cheng-zhi FANG1,Da-sha MEN1,Xiao-liang LIN1,Shao-fei JIANG2 |
1. Key Laboratory of Air-driven Equipment Technology of Zhejiang Province, Quzhou University, Quzhou 324000, China 2. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China |
引用本文:
邓小雷,陈昱珅,方诚至,门大厦,林晓亮,姜少飞. 基于加权融合矩阵系统聚类的多机床温度测点选择方法[J]. 浙江大学学报(工学版), 2023, 57(6): 1147-1156.
Xiao-lei DENG,Yu-shen CHEN,Cheng-zhi FANG,Da-sha MEN,Xiao-liang LIN,Shao-fei JIANG. Temperature measurement point selection method of multi-machine tool based on weighted fusion matrix system clustering. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1147-1156.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.06.010
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I6/1147
|
1 |
邓小雷, 林欢, 王建臣, 等 机床主轴热设计研究综述[J]. 光学精密工程, 2018, 26 (6): 1415- 1429 DENG Xiao-lei, LIN Huan, WANG Jian-chen, et al Review on thermal design of machine tool spindles[J]. Optics and Precision Engineering, 2018, 26 (6): 1415- 1429
doi: 10.3788/OPE.20182606.1415
|
2 |
LI Y, ZHAO W, LAN S, et al A review on spindle thermal error compensation in machine tools[J]. International Journal of Machine Tools and Manufacture, 2015, 95: 20- 38
doi: 10.1016/j.ijmachtools.2015.04.008
|
3 |
LIU Y, YONG L, DONG G, et al Thermally induced volumetric error modeling based on thermal drift and its compensation in Z-axis [J]. International Journal of Advanced Manufacturing Technology, 2013, 69: 2735- 2745
doi: 10.1007/s00170-013-5237-x
|
4 |
HAN J, WANG L, WANG H, et al A new thermal error modeling method for CNC machine tools[J]. International Journal of Advanced Manufacturing Technology, 2012, 62: 205- 212
doi: 10.1007/s00170-011-3796-2
|
5 |
GUO Q, FAN S, XU R, et al Spindle thermal error optimization modeling of a five-axis machine tool[J]. Chinese Journal of Mechanical Engineering, 2017, 30: 746- 753
doi: 10.1007/s10033-017-0098-0
|
6 |
LUO J Y, JIAN B L Establishment of low-cost and stable prediction modals applied for thermal displacements in three axes[J]. IEEE Sensors Journal, 2022, 22 (17): 17031- 17042
doi: 10.1109/JSEN.2022.3192547
|
7 |
MA C, ZHAO L, MEI X, et al Thermal error compensation of high-speed spindle system based on a modified BP neural network[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89: 3071- 3085
doi: 10.1007/s00170-016-9254-4
|
8 |
CHENG Q, QI Z, ZHANG G, et al Robust modelling and prediction of thermally induced positional error based on grey rough set theory and neural networks[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83: 753- 764
doi: 10.1007/s00170-015-7556-6
|
9 |
ZHU M, YANG Y, FENG X, et al Robust modeling method for thermal error of CNC machine tools based on random forest algorithm[J]. Journal of Intelligent Manufacturing, 2023, 34: 2013- 2026
doi: 10.1007/s10845-021-01894-w
|
10 |
LI Z, LI G, XU K, et al Temperature-sensitive point selection and thermal error modeling of spindle based on synthetical temperature information[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113: 1029- 1043
doi: 10.1007/s00170-021-06680-9
|
11 |
蔡德程, 陈缤, 关欣, 等 机床热特性优化研究综述[J]. 上海理工大学学报, 2021, 43 (5): 443- 451 CAI De-cheng, CHEN Bin, GUAN Xin, et al Review on optimization of thermal characteristics of machine tools[J]. Journal of University of Shanghai for Science and Technology, 2021, 43 (5): 443- 451
doi: 10.13255/j.cnki.jusst.20201230002
|
12 |
FU G, GONG H, GAO H, et al Integrated thermal error modeling of machine tool spindle using a chicken swarm optimization algorithm-based radial basic function neural network[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105: 2039- 2055
doi: 10.1007/s00170-019-04388-5
|
13 |
FU G, ZHOU L, LEI G, et al A universal ensemble temperature-sensitive point combination model for spindle thermal error modeling[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119: 3377- 3393
doi: 10.1007/s00170-021-08465-6
|
14 |
YANG L, ZHAO J, JI S A reconstructed variable regression method for thermal error modeling of machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90: 3673- 3684
doi: 10.1007/s00170-016-9648-3
|
15 |
ZHOU Z, HU J, LIU Q, et al The selection of key temperature measurement points for thermal error modeling of heavy-duty computer numerical control machine tools with density peaks clustering[J]. Advances in Mechanical Engineering, 2019, 11 (4): 1- 11
|
16 |
李逢春, 王海同, 李铁民 重型数控机床热误差建模及预测方法的研究[J]. 机械工程学报, 2016, 52 (11): 154- 160 LI Feng-chun, WANG Hai-tong, LI Tie-min Research on thermal error modeling and prediction of heavy CNC machine tools[J]. Journal of Mechanical Engineering, 2016, 52 (11): 154- 160
doi: 10.3901/JME.2016.11.154
|
17 |
LI F, LI T, WANG H, et al A temperature sensor clustering method for thermal error modeling of heavy milling machine tools[J]. Applied Sciences, 2017, 7 (1): 82
doi: 10.3390/app7010082
|
18 |
张伟, 叶文华 基于灰色关联和模糊聚类的机床温度测点优化[J]. 中国机械工程, 2014, 25 (4): 456- 460 ZHANG Wei, YE Wen-hua Optimization of temperature measuring points for machine tools based on grey correlation and fuzzy clustering analysis[J]. China Mechanical Engineering, 2014, 25 (4): 456- 460
doi: 10.3969/j.issn.1004-132X.2014.04.006
|
19 |
苗恩铭, 龚亚运, 成天驹, 等 支持向量回归机在数控加工中心热误差建模中的应用[J]. 光学精密工程, 2013, 21 (4): 980- 986 MIAO En-ming, GONG Ya-yun, CHENG Tian-ju, et al Application of support vector regression machine to thermal error modelling of machine tools[J]. Optics Precision Engineering, 2013, 21 (4): 980- 986
doi: 10.3788/OPE.20132104.0980
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|