自动化技术、计算机技术 |
|
|
|
|
时序多层网络熵值结构洞节点重要性建模 |
胡钢1,2( ),牛琼1,2,王琴2,许丽鹏1,2,任勇军3 |
1. 安徽工业大学 复杂系统多学科管理与控制安徽普通高校重点实验室,安徽 马鞍山 243032 2. 安徽工业大学 管理科学与工程学院,安徽 马鞍山 243032 3. 南京信息工程大学 计算机与软件学院,江苏 南京 210044 |
|
Modeling of node importance in entropy-value structured hole of temporal multilayer network |
Gang HU1,2( ),Qiong NIU1,2,Qin WANG2,Li-peng XU1,2,Yong-jun REN3 |
1. Key Laboratory of Multidisciplinary Management and Control of Complex Systems of Anhui Higher Education Institutes, Anhui University of Technology, Maanshan 243032, China 2. School of Management Science and Engineering, Anhui University of Technology, Maanshan 243032, China 3. School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China |
引用本文:
胡钢,牛琼,王琴,许丽鹏,任勇军. 时序多层网络熵值结构洞节点重要性建模[J]. 浙江大学学报(工学版), 2023, 57(4): 719-725.
Gang HU,Qiong NIU,Qin WANG,Li-peng XU,Yong-jun REN. Modeling of node importance in entropy-value structured hole of temporal multilayer network. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 719-725.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.04.009
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I4/719
|
1 |
AGHAALIZADEH S, AFSHORD S T, BOUYER A, et al. A three-stage algorithm for local community detection based on the high node importance ranking in social networks [J]. Physica A: Statistical Mechanics and its Applications. 2021, 563: 125420.
|
2 |
LI H, ZHANG R, ZHAO Z, et al LPA-MNI: an improved label propagation algorithm based on modularity and node importance for community detection[J]. Entropy (Basel, Switzerland), 2021, 23 (5): 497
doi: 10.3390/e23050497
|
3 |
纪秋磊, 梁伟, 傅伯杰, 等 基于Google Earth Engine与复杂网络的黄河流域土地利用/覆被变化分析[J]. 生态学报, 2021, 42 (6): 1- 14 JI Qiu-lei, LIANG Wei, FU Bo-jie, et al Land ues/cover change in the Tellow River Basin based on Google Earth Engine and complex network[J]. Acta Ecologica Sinica, 2021, 42 (6): 1- 14
|
4 |
CHENFENG X, SONGHUA H, MOFENG Y, et al Mobile device data reveal the dynamics in a positive relationship between human mobility and COVID-19 infections[J]. Proceedings of the National Academy of Sciences, 2020, 117 (44): 27087- 27089
doi: 10.1073/pnas.2010836117
|
5 |
YABE T, TSUBOUCHI K, FUJIWARA N, et al Non-compulsory measures sufficiently reduced human mobility in Tokyo during the COVID-19 epidemic[J]. Scientific Reports, 2020, 10 (1): 1- 9
doi: 10.1038/s41598-019-56847-4
|
6 |
BONACICH P Factoring and weighting approaches to status scores and clique identification[J]. Journal of Mathematical Sociology, 2010, 2 (1): 113
|
7 |
LORRAIN F, WHITE H C Structural equivalence of individuals in social networks[J]. Social Networks, 1977, 1 (1): 67- 98
|
8 |
BORGATTI S P Centrality and network flow[J]. Social Networks, 2005, 27 (1): 55- 71
doi: 10.1016/j.socnet.2004.11.008
|
9 |
ZELEN S M Rethinking centrality: methods and examples[J]. Social Networks, 1989, 11 (1): 1- 37
doi: 10.1016/0378-8733(89)90016-6
|
10 |
杨松青, 蒋沅, 童天驰, 等 基于Tsallis熵的复杂网络节点重要性评估方法[J]. 物理学报, 2021, 70 (21): 273- 284 YANG Song-qing, JIANG Yuan, TONG Tian-chi, et al A method for evaluating the importance of nodes in complex network based on Tsallis entropy[J]. Chinese Journal of Physics, 2021, 70 (21): 273- 284
|
11 |
LU M Node importance evaluation based on neighborhood structure hole and improved TOPSIS[J]. Computer Networks, 2020, 178 (9): 107336- 107349
|
12 |
苏晓萍, 宋玉蓉. 利用邻域“结构洞”寻找社会网络中最具影响力节点[J]. 物理学报, 2015, 64(2): 5-15. SU Xiao-ping, SONG Yu-rong. Leveraging neighborhood “structural holes” to identifying key spreaders in social networks [J] Chinese Journal of Physics, 2015, 64(2): 5-15.
|
13 |
ZENG A, ZHANG C J Ranking spreaders by decomposing complex networks[J]. Physics Letters A, 2013, 377 (14): 1031- 1035
doi: 10.1016/j.physleta.2013.02.039
|
14 |
SUN Q, YANG G Y, ZHOU A, et al An entropy-based self-adaptive node importance evaluation method for complex networks[J]. Complexity, 2020, 2020 (10): 1- 13
|
15 |
杨杰, 张名扬, 芮晓彬, 等 融合节点覆盖范围和结构洞的影响力最大化算法[J]. 计算机应用, 2021, 42 (4): 1- 8 YANG Jie, ZHANG Ming-yang, RUI Xiao-bin, et al Influence maximization algorithm based on node coverage and structural holes[J]. Journal of Computer Applications, 2021, 42 (4): 1- 8
|
16 |
KIM H, ANDERSON R Temporal node centrality in complex networks[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2012, 85 (2): 1- 8
|
17 |
TAYLOR D, MYERS S A, CLAUSET A, et al Eigenvector-based centrality measures for temporal networks[J]. Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 2017, 15 (1): 537- 574
doi: 10.1137/16M1066142
|
18 |
杨剑楠, 刘建国, 郭强 基于层间相似性的时序网络节点重要性研究[J]. 物理学报, 2018, 67 (4): 279- 286 YANG Jian-nan, LIU Jian-guo, GUO Qiang Node importance idenfication for temporal network based on inter-layer similarity[J]. Chinese Journal of Physics, 2018, 67 (4): 279- 286
doi: 10.7498/aps.67.20172255
|
19 |
胡钢, 许丽鹏, 徐翔 基于时序网络层间同构率动态演化的重要节点辨识[J]. 物理学报, 2021, 70 (10): 355- 366 HU Gang, XU Li-peng, XU Xiang Identification of important nodes based on dynamic evolution of inter-layer isomorphism rate in temporal networks[J]. Chinese Journal of Physics, 2021, 70 (10): 355- 366
|
20 |
曹连谦, 王立夫, 孔芝, 等. 多层异质复杂网络系统的能控性[EB/OL]. [2022-04-01]. https://doi.org/10.16383/j.aas.c210654. CAO Lian-qian, WANG Li-fu, KONG Zhi, et al. Controllability of multi-layer heterogeneous complex network systems[EB/OL]. [2022-04-01]. https://doi.org/10.16383/j.aas.c210654.
|
21 |
穆俊芳, 郑文萍, 王杰, 等 基于重连机制的复杂网络鲁棒性分析[J]. 计算机科学, 2021, 48 (7): 130- 136 MU Jun-fang, ZHENG Wen-ping, WANG Jie, et al Robustness analysis of complex network based on rewiring mechanism[J]. Computer Science, 2021, 48 (7): 130- 136
|
22 |
BURT R S Structural holes: the social structure of competition[J]. The Economic Journal, 1994, 40 (2): 685- 686
|
23 |
GÉNOIS M, BARRAT A Can co-location be used as a proxy for face-to-face contacts?[J]. Epj Data Science, 2018, 7 (1): 11
doi: 10.1140/epjds/s13688-018-0140-1
|
24 |
PARANJAPE A, BENSON A R, LESKOVEC J. Motifs in temporal networks [M]. New York: ACM, 2017: 601-610.
|
25 |
CASTELLANO C, PASTOR-SATORRAS R Thresholds for epidemic spreading in networks[J]. Physical Review Letters, 2010, 105 (21): 218701
doi: 10.1103/PhysRevLett.105.218701
|
26 |
BORRONI C G A new rank correlation measure[J]. Statistical Papers, 2013, 54 (2): 255- 270
doi: 10.1007/s00362-011-0423-0
|
27 |
胡钢, 牛琼, 许丽鹏, 等 基于网络超链接信息熵的节点重要性序结构演化建模分析[J]. 电子学报, 2022, 50 (11): 2638- 2644 HU Gang, NIU Qiong, XU Li-peng, et al The model to analyses of node importance order structure evolution based on network hyperlink information entropy[J]. Acta Electronica Sinica, 2022, 50 (11): 2638- 2644
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|