计算机技术 |
|
|
|
|
基于融合相似性和三部图的 circRNA 与疾病关联预测 |
王波( ),刘庭斌,张剑飞,杜晓昕,王鑫炜 |
齐齐哈尔大学 计算机与控制工程学院,黑龙江 齐齐哈尔 161006 |
|
Prediction of circRNA and disease association based on fusion similarity and tripartite graph |
Bo WANG( ),Ting-bin LIU,Jian-fei ZHANG,Xiao-xin DU,Xin-wei WANG |
College of Computer and Control Engineering, Qiqihar University, Qiqihar 161006, China |
引用本文:
王波,刘庭斌,张剑飞,杜晓昕,王鑫炜. 基于融合相似性和三部图的 circRNA 与疾病关联预测[J]. 浙江大学学报(工学版), 2023, 57(12): 2467-2475.
Bo WANG,Ting-bin LIU,Jian-fei ZHANG,Xiao-xin DU,Xin-wei WANG. Prediction of circRNA and disease association based on fusion similarity and tripartite graph. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2467-2475.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.12.014
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I12/2467
|
1 |
雷秀娟, 张文祥, 刘恋 基于多数据融合的circRNA–疾病关联关系预测[J]. 中国科学: 信息科学, 2021, 51 (6): 927- 939 LEI Xiu-juan, ZHANG Wen-xiang, LIU Lian Prediction of circRNA-disease association based on multiple biological data[J]. Scientia Sinica: Informations, 2021, 51 (6): 927- 939
doi: 10.1360/SSI-2019-0142
|
2 |
DU W W, FANG L, YANG W, et al Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity[J]. Cell Death and Differentiation, 2017, 24: 357- 370
|
3 |
LI P, CHEN S, CHEN H, et al Using circular RNA as a novel type of biomarker in the screening of gastric cancer[J]. Clinica Chimica Acta, 2015, 444: 132- 136
doi: 10.1016/j.cca.2015.02.018
|
4 |
VO J N, CIESLIK M, ZHANG Y, et al The landscape of circular RNA in cancer[J]. Cell, 2019, 176 (4): 869- 881
doi: 10.1016/j.cell.2018.12.021
|
5 |
PIWECKA M, GLAZAR P, HERNANDEZ-MIRANDA L R, et al Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function[J]. Science, 2017, 357 (6357): eaam8526
doi: 10.1126/science.aam8526
|
6 |
GLAZAR P, PAPAVASILEIOU P, RAJEWSKY N circBase: a database for circular RNAs[J]. RNA, 2014, 20 (11): 1666- 1670
|
7 |
FAN C, LEI X, FANG Z, et al CircR2Disease: a manually curated database for experimentally supported circular RNAs associated with various diseases[J]. Database, 2018, 2018: bay044
|
8 |
ZHAO Z, WANG K, WU F, et al circRNA disease: a manually curated database of experimentally supported circRNA-disease associations[J]. Cell Death and Disease, 2018, 9: 475
doi: 10.1038/s41419-018-0503-3
|
9 |
GHOSAL S, DAS S, SEN R, et al Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits[J]. Frontiers in Genetics, 2013, 4: 283
|
10 |
WANG L, YAN X, LIU M L, et al Prediction of RNA-protein interactions by combining deep convolutional neural network with feature selection ensemble method[J]. Journal of Theoretical Biology, 2019, 461: 230- 238
doi: 10.1016/j.jtbi.2018.10.029
|
11 |
FAN C, LEI X, WU F X Prediction of CircRNA-disease associations using KATZ model based on heterogeneous networks[J]. International Journal of Biological Sciences, 2018, 14: 1950- 1959
doi: 10.7150/ijbs.28260
|
12 |
LI G, YUE Y, LIANG C, et al NCPCDA: network consistency projection for circRNA-disease association prediction[J]. RSC Advances, 2019, 9: 33222- 33228
doi: 10.1039/C9RA06133A
|
13 |
DING Y, CHEN B, LEI X, et al Predicting novel CircRNA-disease associations based on random walk and logistic regression model[J]. Computational Biology and Chemistry, 2020, 87: 107287
doi: 10.1016/j.compbiolchem.2020.107287
|
14 |
LEI X, FANG Z, GUO L Predicting circRNA-disease associations based on improved collaboration filtering recommendation system with multiple data[J]. Frontiers in Genetics, 2019, 10: 897
doi: 10.3389/fgene.2019.00897
|
15 |
DEEPTHI K, JERESH A S An ensemble approach for circRNA-disease association prediction based on autoencoder and deep neural network[J]. Gene, 2020, 762: 145040
doi: 10.1016/j.gene.2020.145040
|
16 |
XIAO Q, FU Y, YANG Y, et al NSL2CD: identifying potential circRNA-disease associations based on network embedding and subspace learning[J]. Briefings in Bioinformatics, 2021, 22 (6): bbab177
doi: 10.1093/bib/bbab177
|
17 |
JEFFREY H J Chaos game representation of gene structure[J]. Nucleic Acids Research, 1990, 18 (8): 2163- 2170
doi: 10.1093/nar/18.8.2163
|
18 |
WANG L, YOU Z H, LI J Q, et al IMS-CDA: prediction of circrna-disease associations from the integration of multisource similarity information with deep stacked autoencoder model[J]. IEEE Transactions on Cybernetics, 2021, 51 (11): 5522- 5531
doi: 10.1109/TCYB.2020.3022852
|
19 |
SHI Y, LAI R, KERN K, et al. Harmonic surface mapping with Laplace-Beltrami eigenmaps [C]// Proceedings of the 11th International Conference on Medical Image Computing and Computer-Assisted Intervention. [S.l.]: Springer, 2008: 147-154.
|
20 |
耿霞, 韩凯健 一种基于网络表示学习的miRNA-疾病关联预测方法[J]. 计算机应用研究, 2021, 38 (5): 1365- 1370 GENG Xia, HAN Kai-jian miRNA-disease association prediction based on network representation learning method[J]. Applied Research of Computers, 2021, 38 (5): 1365- 1370
doi: 10.19734/j.issn.1001-3695.2020.07.0176
|
21 |
马毅, 郭杏莉, 孙宇彤, 等 基于HeteSim的疾病关联长非编码RNA预测[J]. 计算机研究与发展, 2019, 56 (9): 1889- 1896 MA Yi, GUO Xing-li, SUN Yu-tong, et al Prediction of disease association long non-coding RNA based on HeteSim[J]. Journal of Computer Research and Development, 2019, 56 (9): 1889- 1896
doi: 10.7544/issn1000-1239.2019.20180834
|
22 |
MENG X, HU D, ZHANG P, et al CircFunBase: a database for functional circular RNAs[J]. Database, 2019, 2019: baz003
|
23 |
LORD P W, STEVENS R D, BRASS A, et al Investigating semantic similarity measures across the Gene Ontology: the relationship between sequence and annotation[J]. Bioinformatics, 2003, 19 (10): 1275- 1283
doi: 10.1093/bioinformatics/btg153
|
24 |
LAN W, ZHU M, CHEN Q, et al CircR2Cancer: a manually curated database of associations between circRNAs and cancers[J]. Database, 2020, 2020: baaa085
doi: 10.1093/database/baaa085
|
25 |
JIANG Q, WANG Y, HAO Y, et al miR2Disease: a manually curated database for microRNA deregulation in human disease[J]. Nucleic Acids Research, 2009, 37 (Suppl.1): D98- D104
|
26 |
WANG B, ZHANG C, DU X X, et al lncRNA-disease association prediction based on latent factor model and projection[J]. Scientific Reports, 2021, 11: 19965
doi: 10.1038/s41598-021-99493-5
|
27 |
SCHOBER P, BOER C, SCHWARTE L A Correlation coefficients: appropriate use and interpretation[J]. Anesthesia and Analgesia, 2018, 126 (5): 1763- 1768
doi: 10.1213/ANE.0000000000002864
|
28 |
ZHONG Y, DU Y, YANG X, et al Circular RNAs function as ceRNAs to regulate and control human cancer progression[J]. Molecular Cancer, 2018, 17: 79
doi: 10.1186/s12943-018-0827-8
|
29 |
张奕, 王真梅 图自动编码器上二阶段融合实现的环状RNA-疾病关联预测[J]. 计算机应用, 2023, 43 (6): 1979- 1986 ZHANG Yi, WANG Zhen-mei circRNA-disease association prediction by two-stage fusion of graph auto-encoder[J]. Journal of Computer Applications, 2023, 43 (6): 1979- 1986
|
30 |
JEFFRIES C D, FORD J R, TILSON J L, et al A greedy regression algorithm with coarse weights offers novel advantages[J]. Scientific Reports, 2022, 12: 5440
doi: 10.1038/s41598-022-09415-2
|
31 |
任首朋, 李劲, 王静茹, 等 基于集成回归决策树的lncRNA-疾病关联预测方法[J]. 计算机科学, 2022, 49 (2): 265- 271 REN Shou-peng, LI Jin, WANG Jing-ru, et al Ensemble regression decision trees-based lncRNA-disease association prediction[J]. Computer Science, 2022, 49 (2): 265- 271
|
32 |
张奕, 蔡钢生, 王真梅 基于语义与全局双重注意力机制的长链非编码RNA-疾病关联预测模型[J]. 计算机应用, 2023, 43 (7): 2125- 2132 ZHANG Yi, CAI Gang-sheng, WANG Zhen-mei Long non-coding RNA-disease association prediction model based on semantic and global dual attention mechanisms[J]. Journal of Computer Applications, 2023, 43 (7): 2125- 2132
|
33 |
XIAO Q, ZHONG J, TANG X, et al iCDA-CMG: identifying circRNA-disease associations by federating multi-similarity fusion and collective matrix completion[J]. Molecular Genetics and Genomics, 2021, 296: 223- 233
doi: 10.1007/s00438-020-01741-2
|
34 |
LU C, ZENG M, ZHANG F, et al Deep matrix factorization improves prediction of human circRNA-disease associations[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25 (3): 891- 899
doi: 10.1109/JBHI.2020.2999638
|
35 |
LAN W, DONG Y, CHEN Q, et al KGANCDA: predicting circRNA-disease associations based on knowledge graph attention network[J]. Briefings in Bioinformatics, 2022, 23 (1): bbab494
doi: 10.1093/bib/bbab494
|
36 |
LAN W, ZHANG H, DONG Y, et al DRGCNCDA: predicting circRNA-disease interactions based on knowledge graph and disentangled relational graph convolutional network[J]. Methods, 2022, 208: 35- 41
doi: 10.1016/j.ymeth.2022.10.002
|
37 |
DOBRUCH J, OSZCZUDŁOWSKI M Bladder cancer: current challenges and future directions[J]. Medicina, 2021, 57 (8): 749
doi: 10.3390/medicina57080749
|
38 |
GREENLEE J E, DALMAU J, LYONS T, et al Association of anti-Yo (type I) antibody with paraneoplastic cerebellar degeneration in the setting of transitional cell carcinoma of the bladder: detection of Yo antigen in tumor tissue and fall in antibody titers following tumor removal[J]. Annals of Neurology, 1999, 45 (6): 805- 809
doi: 10.1002/1531-8249(199906)45:6<805::AID-ANA18>3.0.CO;2-G
|
39 |
CHEN P, CHEN J, HE L, et al Identification of circRNA-miRNA-mRNA regulatory network in bladder cancer by integrated analysis[J]. Urologia Internationalis, 2021, 105 (7/8): 705- 715
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|