机械与能源工程 |
|
|
|
|
基于无网格粒子法的复杂三维形状通用离散方法 |
王锋( ),孙中国*( ),郑旭,韩沛东,席光 |
西安交通大学 能源与动力工程学院,陕西 西安 710049 |
|
Discretizing approach for complex three-dimensional geometry based on meshless particle methods |
Feng WANG( ),Zhong-guo SUN*( ),Xu ZHENG,Pei-dong HAN,Guang XI |
School of Energy and Power Engineering, Xi'an Jiaotong University, Xi’an 710049, China |
引用本文:
王锋,孙中国,郑旭,韩沛东,席光. 基于无网格粒子法的复杂三维形状通用离散方法[J]. 浙江大学学报(工学版), 2022, 56(8): 1597-1605.
Feng WANG,Zhong-guo SUN,Xu ZHENG,Pei-dong HAN,Guang XI. Discretizing approach for complex three-dimensional geometry based on meshless particle methods. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1597-1605.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.08.014
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I8/1597
|
1 |
SUN Z G, LIANG Y Y, XI G, et al Numerical simulation of the flow in straight blade agitator with the MPS method[J]. International Journal for Numerical Methods in Fluids, 2010, 67 (2): 1960- 1972
|
2 |
王锋, 孙中国, 刘启新, 等 Y型微混合器内流流场移动粒子半隐式法数值分析[J]. 西安交通大学学报, 2021, 55 (5): 162- 170 WANG Feng, SUN Zhong-guo, LIU Qi-xin, et al Numerical analysis of flow field in the Y-type micromixer using MPS method[J]. Journal of Xi’an Jiaotong University, 2021, 55 (5): 162- 170
doi: 10.7652/xjtuxb202105018
|
3 |
RAHIM S Incompressible SPH modeling of rotary micropump mixers[J]. International Journal of Computational Methods, 2018, 15 (4): 191- 207
|
4 |
MIN S H, KIM H C Study on fluid flow analysis of high-pressure positive displacement pump without clearance[J]. Journal of Korean Institute of Fire Science and Engineering, 2015, 29 (3): 33- 38
|
5 |
KAKUDA K, NAGASHIMA T, HAYASHI Y, et al Three-dimensional fluid flow simulations using GPU-based particle method[J]. Computer Modeling in Engineering and Sciences, 2013, 93 (2): 363- 376
|
6 |
DENG X Q, WANG S S, WANG S K, et al Lubrication mechanism in gearbox of high-speed railway trains[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2020, 14 (1): 1- 19
|
7 |
GUO D, CHEN F C, LIU J, et al Numerical modeling of churning power loss of gear system based on moving particle method[J]. Tribology Transactions, 2020, 63 (2): 182- 193
|
8 |
ZHE J, MILOS S, ERWIN A H, et al Numerical simulations of oil flow inside a gearbox by Smoothed Particle Hydrodynamics (SPH) method[J]. Tribology International, 2018, 127 (1): 47- 58
|
9 |
KOSHIZUKA S, OKA Y Moving-particle semi-implicit method for fragmentation of incompressible fluid[J]. Nuclear Science and Engineering, 1996, 123 (3): 421- 434
doi: 10.13182/NSE96-A24205
|
10 |
马利, 鲍荣浩, 王双连, 等 无网格法中边界畸变的控制与计算效率的提高[J]. 浙江大学学报:工学版, 2007, 41 (6): 963- 967 MA Li, BAO Rong-hao, WANG Shuang-lian, et al Improvement of boundary aberration and computation efficiency in meshless method[J]. Journal of Zhejiang University: Engineering Science, 2007, 41 (6): 963- 967
|
11 |
MATSUNAGA T, SÖDERSTEN A, SHIBATA K, et al Improved treatment of wall boundary conditions for a particle method with consistent spatial discretization[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 358 (2): 112- 131
|
12 |
ZHANG T G, KOSHIZUKA S, MUROTANI K, et al Improvement of pressure distribution to arbitrary geometry with boundary condition represented by polygons in particle method[J]. International Journal for Numerical Methods in Engineering, 2017, 112 (3): 685- 710
|
13 |
ZHANG T G, KOSHIZUKA S, MUROTANI K, et al Improvement of boundary conditions for non-planar boundaries represented by polygons with an initial particle arrangement technique[J]. International Journal of Computational Fluid Dynamics, 2016, 30 (2): 155- 175
doi: 10.1080/10618562.2016.1167194
|
14 |
SUN Y J, XI G, SUN Z G, et al A generic smoothed wall boundary in multi-resolution particle method for fluid-structure interaction problem[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 378 (1): 113- 726
|
15 |
CHEN X, XI G, SUN Z G, et al Improving stability of MPS method by a computational scheme based on conceptual particles[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 278 (1): 254- 271
|
16 |
TANAKA M, CARDOSO R, BAHAI H, et al Multi-resolution MPS method[J]. Journal of Computational Physics, 2018, 359 (2): 106- 136
|
17 |
CHEN X, SUN Z G, LIU L, et al Improved MPS method with variable-size particles[J]. International Journal for Numerical Methods in Fluids, 2016, 80 (2): 358- 374
|
18 |
ZHANG S, MORITA K, FUKUDA K, et al An improved MPS method for numerical simulations of convective heat transfer problems[J]. International Journal for Numerical Methods in Fluids, 2006, 51 (3): 31- 47
|
19 |
TANAKA M, MASUNAGA T Stabilization and smoothing of pressure in MPS method by quasi-compressibility[J]. Journal of Computational Physics, 2010, 229 (1): 4279- 4290
|
20 |
SUN Y J, XI G, SUN Z G, et al A fully Lagrangian method for fluid-structure interaction problems with deformable floating structure[J]. Journal of Fluids and Structures, 2019, 90 (1): 379- 395
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|