Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (12): 2507-2513    DOI: 10.3785/j.issn.1008-973X.2022.12.020
通信工程     
基于Manchester-PAM4调制的无源光网络平滑升级
曹露芳(),卢旸*(),王尧尧,毕美华,胡淼,翟彦蓉
杭州电子科技大学 通信工程学院,浙江 杭州 310018
Smooth migration for passive optical networks based on Manchester-PAM4 modulation
Lu-fang CAO(),Yang LU*(),Yao-yao WANG,Mei-hua BI,Miao HU,Yan-rong ZHAI
School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
 全文: PDF(3333 KB)   HTML
摘要:

为了消除新加入无源光网络(PON)线路对旧有PON线路的干扰,实现新旧PON线路的共存,提出基于Manchester-PAM4调制的PON平滑升级方案. 方案分别测试NRZ、Manchester、PAM4、Manchester-PAM4调制格式的新旧PON信号共存时的眼图和误码率. 测试结果表明,Manchester-PAM4信号减少了与Manchester信号几乎相同的串扰,但提供了双倍的比特率;与消光比减小的NRZ信号相比,Manchester-PAM4信号具有更好的串扰抑制效果. Manchester-PAM4调制的新PON信号不仅抑制了对于旧PON信号的干扰,而且保持了100%的编码效率. 在渐进且“无痕迹”的平滑升级后,Manchester-PAM4能够通过软件操作更改为PAM4,以提供双倍的比特速率.

关键词: 无源光网络 (PON)平滑升级曼彻斯特码串扰抑制编码效率    
Abstract:

A smooth passive optical network (PON) migration based on Manchester-PAM4 modulation was proposed, in order to eliminate the crosstalk from the newly added PON link to the old PON link and realize the coexistence of the two PON links. The eye diagrams and bit error rates were tested when the new PON signal coexisting with the old one in modulation formats of NRZ, Manchester code, PAM4, and Manchester-PAM4, respectively. Test results showed that the Manchester-PAM4 signal reduced almost the same crosstalk as the Manchester code signal, but provided double bit rate, and the Manchester-PAM4 signal showed better crosstalk suppression than the NRZ signal of reduced extinction ratio. The new PON signal in Manchester-PAM4 not only suppressed the crosstalk to the old one, but also maintained 100% coding efficiency. After gradual and "traceless" smooth upgrade, Manchester-PAM4 can be changed to PAM4 through software operation to provide double bit rate.

Key words: passive optical network (PON)    smooth migration    Manchester code    crosstalk suppression    coding efficiency
收稿日期: 2022-01-11 出版日期: 2023-01-03
CLC:  TN 913.7  
基金资助: 杭州电子科技大学研究生科研创新基金资助项目(CXJJ2021095)
通讯作者: 卢旸     E-mail: 1158725201@qq.com;luyang@hdu.edu.cn
作者简介: 曹露芳(1996—),女,硕士生,从事光网络与光通信研究. orcid.org/0000-0003-0142-764X. E-mail: 1158725201@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
曹露芳
卢旸
王尧尧
毕美华
胡淼
翟彦蓉

引用本文:

曹露芳,卢旸,王尧尧,毕美华,胡淼,翟彦蓉. 基于Manchester-PAM4调制的无源光网络平滑升级[J]. 浙江大学学报(工学版), 2022, 56(12): 2507-2513.

Lu-fang CAO,Yang LU,Yao-yao WANG,Mei-hua BI,Miao HU,Yan-rong ZHAI. Smooth migration for passive optical networks based on Manchester-PAM4 modulation. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2507-2513.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.12.020        https://www.zjujournals.com/eng/CN/Y2022/V56/I12/2507

图 1  二进制NRZ、Manchester码、PAM4和Manchester-PAM4的编码格式
图 2  Optisystem15.0仿真生成Manchester-PAM4
图 3  10 Gb/s发射机生成的不同信号频谱
图 4  基于Manchester-PAM4的无源光网络平滑升级方案
图 5  Manchester-PAM4平滑升级测试设置
图 6  不同格式下信号共存的眼图
图 7  新、旧无源光网络的误码率曲线
图 8  旧无源光网络信号与不同调制信号共存的误码率曲线
1 IEEE Computer Society. IEEE 802.3av-2009, IEEE standard for information technology—telecommunications and information exchange between systems—local and metropolitan area networks—specific requirements, part 3: CSMA/CD access method and physical layer specifications amendment 1: physical layer specifications and management parameters for 10 Gb/s passive optical networks [S]. New York: IEEE, 2009.
2 HARSTEAD E, VAN VEEN D, HOUTSMA V, et al Technology roadmap for time-division multiplexed passive optical networks (TDM PONs)[J]. Journal of Lightwave Technology, 2018, 37 (2): 657- 664
3 ZHANG J, YU J, LI X, et al 200 Gbit/s/λ PDM-PAM-4 PON system based on intensity modulation and coherent detection[J]. Journal of Optical Communications and Networking, 2020, 12 (1): A1- A8
doi: 10.1364/JOCN.12.0000A1
4 COUDYZER G, OSSIEUR P, BREYNE L, et al Study of burst-mode adaptive equalization for >25G PON applications[J]. Journal of Optical Communications and Networking, 2020, 12 (1): A104- A112
doi: 10.1364/JOCN.12.00A104
5 VAN VEEN D, HOUTSMA V Strategies for economical next-generation 50G and 100G passive optical networks[J]. Journal of Optical Communications and Networking, 2020, 12 (1): A95- A103
doi: 10.1364/JOCN.12.000A95
6 ITU-T. 40-gigabit-capable passive optical networks 2 (NG-PON2): physical media dependent (PMD) layer specification [S]. Geneva: International Telecommunication Union, 2019.
7 KAZOVSKY L G, SHAW W T, GUTIERREZ D, et al Next-generation optical access networks[J]. Journal of Lightwave Technology, 2007, 25 (11): 3428- 3442
doi: 10.1109/JLT.2007.907748
8 KANI J, BOURGART F, CUI A, et al Next-generation PON-part I: technology roadmap and general requirements[J]. IEEE Communications Magazine, 2009, 47 (11): 43- 49
doi: 10.1109/MCOM.2009.5307465
9 LU Y, ZHOU Q, WEI Y, et al A smooth evolution to next generation PON based on orthogonal modulation[J]. Optics Communications, 2015, 339: 182- 184
doi: 10.1016/j.optcom.2014.11.053
10 LU Y, BI M, HU M, et al Orthogonal modulation application to achieve flexible migration and colorless ONUs for next generation PON[J]. Optics Communications, 2017, 403: 252- 256
doi: 10.1016/j.optcom.2017.07.060
11 LU Y, GONG Y, WEI Y, et al A smooth and gradual evolution to next generation PON based on simple line-coding[J]. IEEE Photonics Technology Letters, 2014, 26 (5): 512- 515
doi: 10.1109/LPT.2013.2295859
12 LU Y, LIU H, ZHOU Q, et al A smooth evolution to next generation PON based on pulse position modulation (PPM)[J]. IEEE Photonics Technology Letters, 2014, 27 (2): 173- 176
13 LU Y, HUANG G, BI M, et al Flexible migration and colorless ONUs for future PON based on simple line-coding[J]. Optical Fiber Technology, 2019, 49: 57- 63
doi: 10.1016/j.yofte.2019.02.002
14 FENG N, SUN X Nyquist four-level pulse amplitude modulation scheme (PAM-4) based on hierarchical modulation in IM/DD-TDM PON with hybrid equalization[J]. Optics Communications, 2020, 457: 124609
doi: 10.1016/j.optcom.2019.124609
15 OLUWAJOBI F I, NGUYEN D N, MALEKMOHAMMADI A Performance evaluation of four-level modified Manchester modulation format for high-speed optical transmission systems[J]. IET Communications, 2019, 13 (15): 2344- 2351
doi: 10.1049/iet-com.2018.6113
16 P802. 3ca 50G-EPON-Physical layer specifications and management parameters for 25 Gb/s and 50 Gb/s passive optical networks [S]. [S. l.]: IEEE, 2019.
17 SZCZERBA K, WESTBERGH P, KAROUT J, et al 30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL[J]. Optics Express, 2011, 19 (26): B203- B208
doi: 10.1364/OE.19.00B203
18 LUO Y, ROBERTS H, GROBE K, et al Physical layer aspects of NG-PON2 standards, part 2: system design and technology feasibility[J]. Journal of Optical Communications and Networking, 2016, 8 (1): 43- 52
doi: 10.1364/JOCN.8.000043
19 HSUEH Y L, ROGGE M S, SHAW W T, et al Smooth upgrade of existing passive optical networks with spectral-shaping line-coding service overlay[J]. Journal of Lightwave Technology, 2005, 23 (9): 2629
doi: 10.1109/JLT.2005.853144
No related articles found!