能源工程、机械工程 |
|
|
|
|
基于物理信息神经网络的燃烧化学微分方程求解 |
王意存1( ),邢江宽1,2,罗坤1,*( ),王海鸥1,樊建人1 |
1. 浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027 2. 京都大学 机械工程与科学系,日本 京都 6158540 |
|
Solving combustion chemical differential equations via physics-informed neural network |
Yi-cun WANG1( ),Jiang-kuan XING1,2,Kun LUO1,*( ),Hai-ou WANG1,Jian-ren FAN1 |
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China 2. Department of Mechanical Engineering and Science, Kyoto University, Kyoto 6158540, Japan |
引用本文:
王意存,邢江宽,罗坤,王海鸥,樊建人. 基于物理信息神经网络的燃烧化学微分方程求解[J]. 浙江大学学报(工学版), 2022, 56(10): 2084-2092.
Yi-cun WANG,Jiang-kuan XING,Kun LUO,Hai-ou WANG,Jian-ren FAN. Solving combustion chemical differential equations via physics-informed neural network. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2084-2092.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.10.020
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I10/2084
|
1 |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686- 707
doi: 10.1016/j.jcp.2018.10.045
|
2 |
BAYDIN A G, PEARLMUTTER B A, RADUL A A, et al Automatic differentiation in machine learning: a survey[J]. Journal of Machine Learning Research, 2018, 18: 1- 43
|
3 |
RAISSI M, YAZDANI A, KARNIADAKIS G E Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations[J]. Science, 2020, 367 (6481): 1026- 1030
doi: 10.1126/science.aaw4741
|
4 |
JIN X W, CAI S Z, LI H, et al NSFnets (Navier-Stokes flow nets): physics-informed neural networks for the incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 2021, 426: 109951
doi: 10.1016/j.jcp.2020.109951
|
5 |
MAO Z P, JAGTAP A D, KARNIADAKIS G E Physics-informed neural networks for high-speed flows[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112789
doi: 10.1016/j.cma.2019.112789
|
6 |
KUMAR A, RIDHA S, NARAHARI M, et al Physics-guided deep neural network to characterize non-Newtonian fluid flow for optimal use of energy resources[J]. Expert Systems with Applications, 2021, 183: 115409
doi: 10.1016/j.eswa.2021.115409
|
7 |
赵暾, 周宇, 程艳青, 等 基于内嵌物理机理神经网络的热传导方程的正问题及逆问题求解[J]. 空气动力学学报, 2021, 39 (5): 19- 26 ZHAO Tun, ZHOU Yu, CHENG Yan-qing, et al Solving forward and inverse problems of partial differential equations of heat conduction using physics-informed neural networks[J]. Acta Aerodynamica Sinica, 2021, 39 (5): 19- 26
doi: 10.7638/kqdlxxb-2020.0176
|
8 |
ZOBEIRY N, HUMFELD K D A physics-informed machine learning approach for solving heat transfer equation in advanced manufacturing and engineering applications[J]. Engineering Applications of Artificial Intelligence, 2021, 101: 104232
doi: 10.1016/j.engappai.2021.104232
|
9 |
陆至彬, 瞿景辉, 刘桦, 等 基于物理信息神经网络的传热过程物理场代理模型的构建[J]. 化工学报, 2021, 72 (3): 1496- 1503 LU Zhi-bin, QU Jing-hui, LIU Hua, et al Surrogate modeling for physical fields of heat transfer processes based on physics-informed neural network[J]. Journal of Chemical Industry and Engineering (China), 2021, 72 (3): 1496- 1503
doi: 10.11949/0438-1157.20201879
|
10 |
PENG G, ALBER M, TEPOLE A B, et al Multiscale modeling meets machine learning: what can we learn?[J]. Archives of Computational Methods in Engineering, 2021, 28 (3): 1017- 1037
doi: 10.1007/s11831-020-09405-5
|
11 |
HUANG Y, ZHANG Z, ZHANG X A direct-forcing immersed boundary method for incompressible flows based on physics-informed neural network[J]. Fluids, 2022, 7 (2): 56
doi: 10.3390/fluids7020056
|
12 |
FUKS O, TCHELEPI H A Limitations of physics informed machine learning for nonlinear two-phase transport in porous media[J]. Journal of Machine Learning for Modeling and Computing, 2020, 1 (1): 19- 37
doi: 10.1615/JMachLearnModelComput.2020033905
|
13 |
JI W, QIU W, SHI Z, et al Stiff-pinn: physics-informed neural network for stiff chemical kinetics[J]. The Journal of Physical Chemistry A, 2021, 125 (36): 8098- 8106
doi: 10.1021/acs.jpca.1c05102
|
14 |
KNIO O M, NAJM H N, WYCKOFF P S A semi-implicit numerical scheme for reacting flow II. Stiff, operator-split formulation[J]. Journal of Computational Physics, 1999, 154 (2): 428- 467
doi: 10.1006/jcph.1999.6322
|
15 |
LANSER D, VERWER J G Analysis of operator splitting for advection-diffusion-reaction problems from air pollution modelling[J]. Journal of Computational and Applied Mathematics, 1999, 111 (1/2): 201- 216
doi: 10.1016/S0377-0427(99)00143-0
|
16 |
ORAN E S, BORIS J P, BORIS J P. Numerical simulation of reactive flow [M]. Cambridge: Cambridge University Press, 2001.
|
17 |
SPORTISSE B An analysis of operator splitting techniques in the stiff case[J]. Journal of Computational Physics, 2000, 161 (1): 140- 168
doi: 10.1006/jcph.2000.6495
|
18 |
GICQUEL L, STAFFELBACH G, POINSOT T Large eddy simulations of gaseous flames in gas turbine combustion chambers[J]. Progress in Energy and Combustion Science, 2012, 38 (6): 782- 817
doi: 10.1016/j.pecs.2012.04.004
|
19 |
夏一帆. 面向航空发动机燃烧室点火问题的数值计算方法研究[D]. 杭州: 浙江大学, 2019. XIA Yi-fan. A study of numerical methods for the ignition process in aeroengine combustors [D]. Hangzhou: Zhejiang University, 2019.
|
20 |
ECHEKKI T, MASTORAKOS E. Turbulent combustion modeling: Advances, new trends and perspectives [M]. Berlin: Springer, 2010.
|
21 |
LU L, MENG X H, MAO Z P, et al DeepXDE: A deep learning library for solving differential equations[J]. SIAM Review, 2021, 63 (1): 208- 228
doi: 10.1137/19M1274067
|
22 |
NABIAN M A, GLADSTONE R J, MEIDANI H Efficient training of physics-informed neural networks via importance sampling[J]. Computer-Aided Civil and Infrastructure Engineering, 2021, 36 (8): 962- 977
doi: 10.1111/mice.12685
|
23 |
武育宏. 基于物理机制的深度神经网络在数值求解非线性Degasperis-Procesi方程中的应用[D]. 上海: 上海师范大学, 2020. WU Yu-hong. Application of physics-informed neural network in numerical solving of nonlinear Degasperis-Procesi equation [D]. Shanghai: Shanghai Normal University, 2020.
|
24 |
WANNER G, HAIRER E. Solving ordinary differential equations II [M]. Berlin: Springer, 1996.
|
25 |
ABADI M, BARHAM P, CHEN J, et al. TensorFlow: a system for large-scale machine learning [C]// 12th USENIX Symposium on Operating Systems Design and Implementation. Savannah: USENIX Association, 2016: 265-283.
|
26 |
WELLER H G, TABOR G, JASAK H, et al A tensorial approach to computational continuum mechanics using object-oriented techniques[J]. Computers in Physics, 1998, 12 (6): 620- 631
doi: 10.1063/1.168744
|
27 |
IMREN A, HAWORTH D C On the merits of extrapolation-based stiff ODE solvers for combustion CFD[J]. Combustion and Flame, 2016, 174: 1- 15
doi: 10.1016/j.combustflame.2016.09.018
|
28 |
GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks [C]// Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. Sardinia: [s. n.], 2010: 249-256.
|
29 |
KINGMA D P, BA J. Adam: A method for stochastic optimization [EB/OL]. [2022-03-01]. https://arxiv.org/abs/1412.6980.
|
30 |
LAGARIS I E, LIKAS A, FOTIADIS D I Artificial neural networks for solving ordinary and partial differential equations[J]. IEEE Transactions on Neural Networks, 1998, 9 (5): 987- 1000
doi: 10.1109/72.712178
|
31 |
VAN OIJEN J A, LAMMERS F A, DE GOEY L Modeling of complex premixed burner systems by using flamelet-generated manifolds[J]. Combustion and Flame, 2001, 127 (3): 2124- 2134
doi: 10.1016/S0010-2180(01)00316-9
|
32 |
PIERCE C D, MOIN P Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion[J]. Journal of Fluid Mechanics, 2004, 504: 73- 97
doi: 10.1017/S0022112004008213
|
33 |
BILGER R W, STARNER S H, KEE R J On reduced mechanisms for methane air combustion in nonpremixed flames[J]. Combustion and Flame, 1990, 80 (2): 135- 149
doi: 10.1016/0010-2180(90)90122-8
|
34 |
NAKAMURA M, AKAMATSU F, KUROSE R, et al Combustion mechanism of liquid fuel spray in a gaseous flame[J]. Physics of Fluids, 2005, 17 (12): 123301
doi: 10.1063/1.2140294
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|