| 
					
						| 
								
									| 土木工程、水利工程 |  |     |  |  
    					|  |  
    					| 基于半监督机器学习的滑坡易发性预测建模 |  
						| 黄发明1(  ),潘李含1,姚池1,周创兵2,姜清辉2,常志璐1 |  
					| 1. 南昌大学 建筑工程学院,江西 南昌 330031 2. 武汉大学 土木建筑工程学院,湖北 武汉 430072
 |  
						|  |  
    					| Landslide susceptibility prediction modelling based on semi-supervised machine learning |  
						| Fa-ming HUANG1(  ),Li-han PAN1,Chi YAO1,Chuang-bing ZHOU2,Qing-hui JIANG2,Zhi-lu CHANG1 |  
						| 1. School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China 2. School of Civil Engineering, Wuhan University, Wuhan 430072, China
 |  
					
						| 
								
									|  
          
          
            
             
												
												
												| 
												
												引用本文:
																																黄发明,潘李含,姚池,周创兵,姜清辉,常志璐. 基于半监督机器学习的滑坡易发性预测建模[J]. 浙江大学学报(工学版), 2021, 55(9): 1705-1713.	
																															 
																																Fa-ming HUANG,Li-han PAN,Chi YAO,Chuang-bing ZHOU,Qing-hui JIANG,Zhi-lu CHANG. Landslide susceptibility prediction modelling based on semi-supervised machine learning. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1705-1713.	
																															 链接本文: 
																
																	
																	https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.09.012
																	   或   
																
																
																https://www.zjujournals.com/eng/CN/Y2021/V55/I9/1705
														    |  
            
									            
									                
																																															
																| 1 | BUI D T, PRADHAN B, LOFMAN O, et al Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS[J]. Computers and Geosciences, 2012, 45: 199- 211 doi: 10.1016/j.cageo.2011.10.031
 |  
																| 2 | 刘渊博, 牛瑞卿, 于宪煜, 等 旋转森林模型在滑坡易发性评价中的应用研究[J]. 武汉大学学报:信息科学版, 2018, 43 (6): 959- 964 LIU Yuan-bo, NIU Rui-qing, YU Xian-yu, et al Application of the rotation forest model in landslide susceptibility assessment[J]. Geomatics and Information Science of Wuhan University, 2018, 43 (6): 959- 964
 |  
																| 3 | WANG Q, WANG Y, NIU R, et al Integration of information theory, K-means cluster analysis and the logistic regression model for landslide susceptibility mapping in the Three Gorges Area, China[J]. Remote Sensing, 2017, 9 (9): 938 doi: 10.3390/rs9090938
 |  
																| 4 | 黄发明, 殷坤龙, 蒋水华, 等 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报, 2018, 37 (1): 156- 167 HUANG Fa-ming, YIN Kun-long, JIANG Shui-hua, et al Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (1): 156- 167
 |  
																| 5 | BUI D T, TUAN T A, KLEMPE H, et al Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree[J]. Landslides, 2016, 13 (2): 361- 378 doi: 10.1007/s10346-015-0557-6
 |  
																| 6 | 黄发明, 殷坤龙, 张桂荣, 等 多变量PSO-SVM模型预测滑坡地下水位[J]. 浙江大学学报:工学版, 2015, 49 (6): 1193- 1200 HUANG Fa-ming, YIN Kun-long, ZHANG Gui-rong, et al Prediction of groundwater level in landslide using multivariable PSO-SVM model[J]. Journal of Zhejiang University:Engineering Science, 2015, 49 (6): 1193- 1200
 |  
																| 7 | HUANG F, ZHANG J, ZHOU C, et al A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction[J]. Landslides, 2020, 17 (1): 217- 229 doi: 10.1007/s10346-019-01274-9
 |  
																| 8 | CHANG Z, DU Z, ZHANG F, et al Landslide susceptibility prediction based on remote sensing images and GIS: comparisons of supervised and unsupervised machine learning models[J]. Remote Sensing, 2020, 12 (3): 502 doi: 10.3390/rs12030502
 |  
																| 9 | 冯杭建, 周爱国, 俞剑君, 等 浙西梅雨滑坡易发性评价模型对比[J]. 地球科学, 2016, 41 (3): 403- 415 FENG Hang-jian, ZHOU Ai-guo, YU Jian-jun, et al A comparative study on plum-rain-triggered landslide susceptibility assessment models in west Zhejiang Province[J]. Earth Science, 2016, 41 (3): 403- 415
 |  
																| 10 | 柯懂湘, 潘丽敏, 罗森林, 等 基于随机森林算法的Android恶意行为识别与分类方法[J]. 浙江大学学报:工学版, 2019, 53 (10): 2013- 2023 KE Dong-xiang, PAN Li-min, LUO Sen-lin, et al Android malicious behavior recognition and classification method based on random forest algorithm[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (10): 2013- 2023
 doi: 10.3785/j.issn.1008-973X.2019.10.019
 |  
																| 11 | PRADHAN B A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS[J]. Computers and Geosciences, 2013, 51: 350- 365 doi: 10.1016/j.cageo.2012.08.023
 |  
																| 12 | 郭子正, 殷坤龙, 付圣, 等 基于GIS与WOE-BP模型的滑坡易发性评价[J]. 地球科学, 2019, 44 (12): 4299- 4312 GUO Zi-zheng, YIN Kun-long, FU Sheng, et al Evaluation of landslide susceptibility based on GIS and WOE-BP model[J]. Earth Science, 2019, 44 (12): 4299- 4312
 |  
																| 13 | HUANG F, CAO Z, GUO J, et al Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping[J]. Catena, 2020, 191: 104580 doi: 10.1016/j.catena.2020.104580
 |  
																| 14 | 胡云青, 邱清盈, 余秀, 等 基于改进三体训练法的半监督专利文本分类方法[J]. 浙江大学学报:工学版, 2020, 54 (2): 331- 339 HU Yu-qing, QIU Qing-ying, YU Xiu, et al Semi-supervised patent text classification method based on improved Tri-training algorithm[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (2): 331- 339
 |  
																| 15 | 张为, 李远耀, 张泰丽, 等 基于孕灾敏感性分析的高植被覆盖区滑坡地质灾害遥感解译[J]. 安全与环境工程, 2019, 26 (3): 28- 35 ZHANG Wei, LI Yuan-yao, ZHANG Tai-li, et al Remote sensing interpretation of landslide geological hazards in high vegetation coverage area based on hazard sensitivity analysis[J]. Safety and Environmental Engineering, 2019, 26 (3): 28- 35
 |  
																| 16 | 黄发明, 叶舟, 姚池, 等 滑坡易发性预测不确定性: 环境因子不同属性区间划分和不同数据驱动模型的影响[J]. 地球科学, 2020, 45 (12): 4535- 4549 HUANG Fa-ming, YE Zhou, YAO Chi, et al Uncertainties of landslide susceptibility prediction: different attribute interval divisions of environmental factors and different data-based models[J]. Earth Science, 2020, 45 (12): 4535- 4549
 |  
																| 17 | HONG H, PRADHAN B, XU C, et al Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines[J]. Catena, 2015, 133: 266- 281 doi: 10.1016/j.catena.2015.05.019
 |  
																| 18 | HUANG F, YIN K, HUANG J, et al Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine[J]. Engineering Geology, 2017, 223: 11- 22 doi: 10.1016/j.enggeo.2017.04.013
 |  
																| 19 | ZHU L, HUANG L, FAN L, et al Landslide susceptibility prediction modeling based on remote sensing and a novel deep learning algorithm of a cascade-parallel recurrent neural network[J]. Sensors (Basel, Switzerland), 2020, 20 (6): 1576 doi: 10.3390/s20061576
 |  
																| 20 | 冯杭建, 周爱国, 唐小明, 等 中国东南地区隐性滑坡遥感识别研究[J]. 地质论评, 2014, 60 (6): 1370- 1380 FENG Hang-jian, ZHOU Ai-guo, TANG Xiao-ming, et al Study on remote sensing interpretation for implicit landslide in southeast China[J]. Geological Review, 2014, 60 (6): 1370- 1380
 |  
             
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |