Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (9): 1668-1675    DOI: 10.3785/j.issn.1008-973X.2021.09.008
机械工程、能源工程     
基于多坡度运动的岩羊垂直地反力特征
刘翔宇1(),隗海林1,钱志辉2,*(),任雷2,3
1. 吉林大学 交通学院,吉林 长春 130022
2. 吉林大学 工程仿生教育部重点实验室,吉林 长春 130022
3. 曼彻斯特大学 工程学院,大曼彻斯特 曼彻斯特 M13 9PL
Vertical ground reaction force characteristics of blue sheep based on different slopes walking
Xiang-yu LIU1(),Hai-lin KUI1,Zhi-hui QIAN2,*(),Lei REN2,3
1. College of Transportation, Jilin University, Changchun 130022, China
2. Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
3. School of Engineering, University of Manchester, Manchester M13 9PL, UK
 全文: PDF(1245 KB)   HTML
摘要:

为了给具有优异攀爬性能的仿生四足机器人提供仿生蓝本,以岩羊为研究对象,利用内嵌压力板的可变坡度斜坡通道,测试其四肢垂直地反力在不同坡度上的变化规律. 结果表明,岩羊在平地上行走时,前后肢左右两侧的垂直地反力峰值和垂直冲量完全对称,前肢对称指数分别为99.16%、99.62%,后肢对称指数分别为98.65%、99.42%. 随着坡度的增加,岩羊调整四肢的垂直地反力分布以防止跛行,导致左右蹄的对称性指数出现波动. 当岩羊在平地行走时,前肢比后肢承受更多的垂直地反力,后肢承受的垂直地反力随着坡度的增加逐渐增多. 岩羊肢体左右侧的差异性指数随坡度的变化具有相似性,当坡度为0~35°时,岩羊肢体左右侧差异性指数的均值分别为1.298、1.305 7、1.174 4、1.223 75、1.017 5、0.890 5、0.777 8、0.753 5.

关键词: 工程仿生学岩羊可变坡度压力板垂直地反力    
Abstract:

Blue sheep was selected as the object to test the variation of its limbs vertical ground reaction force by variable slope channel with built-in pressure plate, in order to supply bionic prototype for quadruped robots with excellent climbing performance. Results showed that the peak vertical force and the vertical impulse on the left and right sides of the front and hind limbs were completely symmetrical when the sheep walking on the flat ground. The symmetry index of the front limbs was 99.16% and 99.62% respectively, and the symmetry index of the rear limbs was 98.65% and 99.42% respectively. Along with the increasing of slope angle, the blue sheep adjusted the vertical force distribution to prevent lameness, which caused fluctuations in the symmetry index of the left and right hoof. When walking on flat ground, the forelimbs of blue sheep showed higher vertical force than the rear limbs. With the increasing of slope, the vertical force borne by the rear limbs gradually increased. The difference index on the left and right sides of the blue sheep limb has a similar change pattern on different slopes. The mean difference indexes on the left and right limbs of the blue sheep from 0 to 35 degrees were 1.298, 1.305 7, 1.174 4, 1.223 75, 1.017 5, 0.890 5, 0.777 8 and 0.753 5 respectively.

Key words: engineering bionics    blue sheep    variable slope    pressure plate    vertical ground reaction force
收稿日期: 2020-09-12 出版日期: 2021-10-20
CLC:  Q 811.9  
基金资助: 国家自然科学基金资助项目(91848204,91948302,51675222);吉林省科技发展计划资助项目(20180101068JC)
通讯作者: 钱志辉     E-mail: liubeixiangyu@163.com;zhqian@jlu.edu.cn
作者简介: 刘翔宇(1991—),男,博士生,从事工程仿生学研究. orcid.org/0000-0003-3595-3496. E-mail: liubeixiangyu@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘翔宇
隗海林
钱志辉
任雷

引用本文:

刘翔宇,隗海林,钱志辉,任雷. 基于多坡度运动的岩羊垂直地反力特征[J]. 浙江大学学报(工学版), 2021, 55(9): 1668-1675.

Xiang-yu LIU,Hai-lin KUI,Zhi-hui QIAN,Lei REN. Vertical ground reaction force characteristics of blue sheep based on different slopes walking. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1668-1675.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.09.008        https://www.zjujournals.com/eng/CN/Y2021/V55/I9/1668

图 1  实验岩羊
图 2  垂直地反力采集实验现场图
图 3  压力板生成的蹄印
图 4  岩羊蹄垂直地反力−时间曲线
α/(°) Fpyq/(N·kg?1) Fpyh/(N·kg?1) Fpzq/(N·kg?1) Fpzh/(N·kg?1)
0 4.75±0.59 3.65±0.14 4.79±0.48 3.70±0.31
5 3.15±0.21 2.39±0.19 2.69±0.14 2.08±0.34
10 2.66±0.33 2.39±0.29 3.04±0.73 2.46±0.63
15 3.72±0.15 3.26±0.26 3.24±0.49 2.48±0.31
20 2.25±0.15 2.62±0.27 3.27±0.29 2.78±0.20
25 2.34±0.25 3.01±0.30 2.34±0.37 2.33±0.26
30 1.81±0.47 2.80±0.50 2.40±0.32 2.64±0.65
35 2.23±0.21 2.83±0.34 2.61±0.13 3.63±0.37
表 1  岩羊蹄的垂直地反力峰值
α/(°) Iyq/(N·s·kg?1) Iyh/(N·s·kg?1) Izq/(N·s·kg?1) Izh/(N·s·kg?1)
2.65±0.47 1.71±0.22 2.66±0.33 1.72±0.21
1.53±0.39 1.03±0.14 1.37±0.38 0.86±0.23
10° 1.04±0.30 0.92±0.22 1.13±0.13 0.99±0.12
15° 1.11±0.10 0.96±0.19 1.13±0.15 0.88±0.19
20° 0.81±0.11 1.08±0.18 1.11±0.14 0.97±0.14
25° 0.77±0.17 1.23±0.23 0.79±0.15I 0.87±0.12
30° 0.57±0.19 1.15±0.18 0.73±0.09 1.00±0.14
35° 0.32±0.06 0.73±0.17 0.30±0.05 0.50±0.09
表 2  岩羊蹄的垂直冲量
图 5  岩羊蹄垂直地反力峰值统计图
图 6  岩羊蹄垂直冲量统计图
α/(°) SFQ/% SFH/% α/(°) SFQ/% SFH/%
0 99.16 98.65 20 68.81 94.24
5 85.39 87.03 25 100 77.41
10 67.76 97.15 30 75.42 94.29
15 87.10 76.07 35 85.44 77.95
表 3  垂直地反力峰值的对称指数
α/(°) SIQ/% SIH/% α/(°) SIQ/% SIH/%
0 99.62 99.42 20 72.97 89.81
5 89.54 83.50 25 97.47 70.73
10 92.04 92.93 30 78.08 86.96
15 98.23 91.67 35 93.75 68.49
表 4  垂直冲量的对称指数
图 7  左、右蹄垂直地反力峰值对比
图 8  左、右蹄垂直冲量对比
α/(°) DFY DFZ α/(°) DFY DFZ
0 1.301 4 1.294 6 20 0.858 8 1.176 2
5 1.318 0 1.293 3 25 0.777 4 1.004 2
10 1.113 0 1.235 8 30 0.646 4 0.909 1
15 1.141 1 1.306 4 35 0.788 0.719
表 5  垂直地反力峰值的差异性指数
α/(°) DIY DIZ α/(°) DIY DIZ
0 1.549 7 1.546 5 20 0.745 2 1.144 3
5 1.485 4 1.743 0 25 0.626 0 0.908 0
10 1.130 4 1.141 4 30 0.495 7 0.73
15 1.156 3 1.284 1 35 0.438 4 0.6
表 6  垂直冲量的差异性指数
图 9  前蹄与后蹄垂直地反力峰值在不同坡度的对比
图 10  前蹄与后蹄垂直冲量在不同坡度的对比
图 11  差异性指数随坡度的变化规律
1 骆颖. 贺兰山岩羊(Pseudois nayaur)和马鹿(Cervus elaphus alxaicus)的食性及生境选择比较研究[D]. 哈尔滨: 东北林业大学, 2011: 1-9.
LUO Ying. Comparing the diet and habitat selection of sympatric blue sheep (Pseudois nayaur) and red deer (Cervus elaphus alxaicus) in Helan mountaine, China [D]. Harbin: Northeast Forestry University, 2011: 1-9.
2 刘喜玲. 贺兰山岩羊步态运动学分析[D]. 哈尔滨: 东北林业大学, 2012: 1-3.
LIU Xi-ling. The kinematics analysis of the blue sheep gait in Helan mountain [D]. Harbin: Northeast Forestry University, 2012: 1-3.
3 RAIBERT M, BLANKESPOOR K, NELSON G, et al Bigdog, the rough-terrain quadruped robot[J]. IFAC Proceedings Volumes, 2008, 41 (2): 10822- 10825
doi: 10.3182/20080706-5-KR-1001.01833
4 HYUN D J, SEOK S, LEE J, et al High speed trot-running: implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah[J]. International Journal of Robotics Research, 2014, 33 (11): 417- 1445
5 KATZ B, DI C J, KIM S. Mini Cheetah: a platform for pushing the limits of dynamic quadruped control [C]// IEEE International Conference on Robotics and Automation ICRA. New York: IEEE, 2019: 6295-6301.
6 BELLICOSO C D, JENELTEN F, FANKHAUSER P, et al. Dynamic locomotion and whole-body control for quadrupedal robots [C]// IEEE International Conference on Intelligent Robots and Systems. New York: IEEE, 2017: 3359-3365.
7 钱志辉, 苗怀彬, 商震, 等 基于多种步态的德国牧羊犬足−地接触分析[J]. 吉林大学学报:工学版, 2014, 44 (6): 1692- 1697
QIAN Zhi-hui, MIAO Huai-bin, SHANG Zhen, et al Foot-ground contact analysis of German shepherd dog in walking, trotting and jumping gaits[J]. Journal of Jilin University: Engineering and Technology Edition, 2014, 44 (6): 1692- 1697
8 田为军, 丛茜, 金敬福 德国牧羊犬的关节角及其地反力[J]. 吉林大学学报: 工学版, 2009, 39 (Suppl. 1): 227- 231
TIAN Wei-jun, CONG Qian, JIN Jing-fu Joint angles and ground reaction forces of German Shepherd dog[J]. Journal of Jilin University:Engineering and Technology Edition, 2009, 39 (Suppl. 1): 227- 231
9 STADIG S M, BERGH A K Gait and jump analysis in healthy cats using a pressure mat system[J]. Journal of Feline Medicine and Surgery, 2015, 17 (6): 523- 529
doi: 10.1177/1098612X14551588
10 SCHWARZ N, TICHY A, PEHAM C, et al Vertical force distribution in the paws of sound Labrador retrievers during walking[J]. Veterinary Journal, 2017, 221: 16- 22
doi: 10.1016/j.tvjl.2017.01.014
11 OOSTERLINCK M, PILLE F, BACK W, et al Use of a stand-alone pressure plate for the objective evaluation of forelimb symmetry in sound ponies at walk and trot[J]. The Veterinary Journal, 2010, 183 (3): 305- 309
doi: 10.1016/j.tvjl.2008.12.012
12 OOSTERLINCK M, PILLE F, BACK W, et al A pressure plate study on fore and hindlimb loading and the association with hoof contact area in sound ponies at the walk and trot[J]. The Veterinary Journal, 2011, 190 (1): 71- 76
doi: 10.1016/j.tvjl.2010.08.016
13 MERKENS H W, SCHAMHARDT H C, VAN OSCH, et al Ground reaction force patterns of Dutch Warmblood horses at normal trot[J]. Equine Veterinary Journal, 1993, 25 (2): 134- 137
doi: 10.1111/j.2042-3306.1993.tb02923.x
14 RIFKIN R E, GRZESKOWIAK R M, MULON P-Y, et al Use of a pressure-sensing walkway system for biometric assessment of gait characteristics in goats[J]. Plos One, 2019, 14 (10): e0223771
doi: 10.1371/journal.pone.0223771
15 KIM J, BREUR G J Temporospatial and kinetic characteristics of sheep walking on a pressure sensing walkway[J]. Canadian Journal of Veterinary Research, 2008, 72 (1): 50- 55
16 LEWINSON R T, STEFANYSHYNAB D J A descriptive analysis of the climbing mechanics of a mountain goat (Oreamnos americanus) [J]. Zoology, 2016, 119 (6): 541- 546
doi: 10.1016/j.zool.2016.06.001
17 PANDY MG, KUMAR V, BERME N,  et  al The dynamics of quadrupedal locomotion[J]. Journal of Biomechanical Engineering, 1988, 110 (3): 230- 237
doi: 10.1115/1.3108436
18 MERKENS H W, SCHAMHARDT H C, HARTMAN W, et al Ground reaction force patterns of Dutch Warmblood horses at normal walk[J]. Equine Veterinary Journal, 1986, 18 (3): 207- 214
doi: 10.1111/j.2042-3306.1986.tb03600.x
19 ZHANG F, WANG Y, ZHENG L, et al Biomimetic walking mechanisms: kinematic parameters of goats walking on different slopes[J]. Concurrency and Computation-Practice and Experience, 2018, 30 (24): e4913
doi: 10.1002/cpe.4913
20 董永贵, 孙照焱, 贾惠波 振动信号异常值的免疫机制检测算法[J]. 清华大学学报:自然科学版, 2004, 44 (5): 625- 628
DONG Yong-gui, SUN Zhao-yan, JIA Hui-bo Immune mechanism based detection algorithm for abnormal vibration signals[J]. Journal of Tsinghua University: Science and Technology, 2004, 44 (5): 625- 628
No related articles found!