Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (8): 1464-1472    DOI: 10.3785/j.issn.1008-973X.2021.08.007
土木工程、交通工程     
钢管混凝土柱-混合梁节点抗震性能试验研究
冯帅克1(),郭正兴1,*(),倪路瑶1,李国建2,宫长义2,谢超2,满建政2
1. 东南大学 土木工程学院,江苏 南京 211189
2. 中亿丰建设集团股份有限公司,江苏 苏州 215131
Experimental study on seismic performance of joints connecting concrete-filled steel tube columns and hybrid beams
Shuai-ke FENG1(),Zheng-xing GUO1,*(),Lu-yao NI1,Guo-jian LI2,Chang-yi GONG2,Chao XIE2,Jian-zheng MAN2
1. School of Civil Engineering, Southeast University, Nanjing 211189, China
2. Zhongyifeng Construction Group Co. Ltd, Suzhou 215131, China
 全文: PDF(1519 KB)   HTML
摘要:

提出适用于装配式大跨度组合框架结构的钢管混凝土柱-混合梁节点. 为了研究节点的抗震性能及受力机理,对2个足尺中柱节点试件进行低周往复加载试验. 2个试件分别采用混合梁端型钢翼缘削弱式(RBS)节点以及梁端普通型钢节点. 对2个节点的破坏形态、耗能能力、承载能力、延性以及混合梁的应变分布规律进行对比分析. 试验结果表明,对梁端型钢翼缘的削弱处理可以有效促进试件在翼缘削弱区形成塑性铰,避免梁端焊缝的脆性破坏. 相比型钢未经处理的节点,翼缘削弱节点展现出更好的延性和耗能能力;梁底附加钢筋屈服后的黏结滑移会影响节点的耗能能力,在锚固长度满足规范要求的前提下,应适当增加其配筋率,以防止过早出现附加钢筋屈服后的黏结滑移.

关键词: 混合梁钢管混凝土柱翼缘削弱式(RBS)节点抗震性能塑性铰    
Abstract:

A novel joint was proposed for connecting hybrid load beams and concrete-filled steel tube columns for long-span prefabricated structures. Cyclic reciprocating tests were conducted on two full-scale interior joint specimens to investigate the seismic performance and mechanical performance of the proposed joint. Two joint specimens were designed with different types of hybrid steel-concrete beams, i.e., reduced beam section (RBS) and untreated H-steels were respectively used at the beam ends. The seismic performance of the joints was analyzed comprehensively based on the failure pattern, dissipated energy, bearing capacity, ductility and strain distribution along the precast hybrid beams. Test results showed that the specimen with RBS region can promote plastic hinge formation in the region, and avoid the brittle fracture of beam end welds. In contrast, the proposed joint with RBS region exhibited better ductility and energy dissipation capability than the joint with untreated steel beam. The energy dissipation of the specimens was affected significantly by the bond slip after the anchoring bars entered the yield stage. Therefore, When the anchorage length of the bars satisfies the design recommendations, a sufficient reinforcement ratio of the bars should be ensured to prevent the emergence of the anchorage bar bond slippage after the bars yielded.

Key words: hybrid beam    concrete-filled steel tube column    reduced beam section (RBS) joint    seismic performance    plastic hinge
收稿日期: 2020-08-07 出版日期: 2021-09-01
CLC:  TU 375  
基金资助: 国家“十三五”重点研发计划资助项目(2016YFC0701703)
通讯作者: 郭正兴     E-mail: fsk@seu.edu.cn;guozx195608@126.com
作者简介: 冯帅克(1993—),男,博士生,从事装配式组合结构研究. orcid.org/0000-0003-0602-5973. E-mail: fsk@seu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
冯帅克
郭正兴
倪路瑶
李国建
宫长义
谢超
满建政

引用本文:

冯帅克,郭正兴,倪路瑶,李国建,宫长义,谢超,满建政. 钢管混凝土柱-混合梁节点抗震性能试验研究[J]. 浙江大学学报(工学版), 2021, 55(8): 1464-1472.

Shuai-ke FENG,Zheng-xing GUO,Lu-yao NI,Guo-jian LI,Chang-yi GONG,Chao XIE,Jian-zheng MAN. Experimental study on seismic performance of joints connecting concrete-filled steel tube columns and hybrid beams. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1464-1472.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.08.007        https://www.zjujournals.com/eng/CN/Y2021/V55/I8/1464

图 1  钢-预制混凝土混合梁示意图
图 2  钢管混凝土柱-混合梁节点构造
图 3  翼缘削弱区参数
图 4  梁截面弯矩关系图
图 5  试件基本尺寸及配筋图
试件编号 Mc/(kN·m) Mb/(kN·m) Mbt/(kN·m) Mbr/(kN·m) $ M_{{\rm{bt}}}^{\rm{t}} $/(kN·m) $ M_{{\rm{br}}}^{\rm{t}} $/(kN·m) Mbt/ $M_{{\rm{bt}}}^{\rm{t}}$ Mbr/ $M_{{\rm{br}}}^{\rm{t}}$ k
IJ-1 885.1 514.3 ? 415.9 ? 347.5 ? 1.2 1.7
IJ-2 885.1 514.3 323.5 415.9 460.0 291.9 0.7 1.4 2.7
表 1  抗弯承载力理论计算结果
钢材类型 (t/d) /mm fy/(N·mm?2) fu/(N·mm?2) Es/GPa εy/10?6
钢管 12.2 300.6 403.8 203 1481
H型钢翼缘 12.0 298.7 413.6 203 1471
H型钢腹板 8.1 312.6 430.2 202 1548
钢筋 22.0 448.0 615.0 200 2240
钢筋 20.0 458.0 627.0 201 2279
表 2  钢材与钢筋力学性能
图 6  试件加载装置
图 7  应变测点布置
图 8  试件裂缝分布与破坏形态
图 9  荷载-位移滞回曲线与骨架曲线
图 10  试件刚度退化曲线
试件 加载方向 Py/kN Δy/mm Pu/kN P0.85/kN Δu/mm μ $\bar \mu$
IJ-1 正向 254.1 27.2 306.9 276.2 57.2 2.1 2.1
负向 ?261.9 ?28.1 ?303.4 ?257.8 ?58.6 2.1
IJ-2 正向 246.6 29.0 302.3 296.8 123.6 4.3 4.2
负向 ?234.6 ?29.1 ?292.6 ?248.7 ?119.8 4.1
表 3  试件主要性能指标
图 11  柱内钢管端部应变发展
图 12  梁内型钢翼缘与纵筋应变发展
图 13  试件耗能能力对比
1 HAN L H, AN Y F Performance of concrete encased CFST stub columns under axial compression[J]. Journal of Constructional Steel Research, 2014, 93 (2): 62- 76
2 HAN L H, LIAO F Y, TAO Z, et al Performance of concrete filled steel tube reinforced concrete columns subjected to cyclic bending[J]. Journal of Constructional Steel Research, 2009, 65 (8/9): 1607- 1616
3 QIN Y, CHEN Z, WANG X Elastoplastic behavior of through-diaphragm connections to concrete-filled rectangular steel tubular columns[J]. Journal of Constructional Steel Research, 2014, 93: 88- 96
doi: 10.1016/j.jcsr.2013.10.011
4 RICLES J M, PENG S W, LU L W Seismic behavior of composite concrete filled steel tube column-wide flange beam moment connections[J]. Journal of Structural Engineering, 2014, 130 (2): 223- 232
5 MOURAD S, KOROL R M, GHOBARAH A Design of extended end-plate connections for hollow section columns[J]. Canadian Journal of Civil Engineering, 1996, 23 (1): 277- 286
doi: 10.1139/l96-029
6 KIM O J, MOON J H, LEE L H Shear strength of RS hybrid steel beam with reinforced concrete ends[J]. Journal of Architectural Institute in Korea, 2001, 17 (5): 27- 34
7 YANG K H, OH M H, KIM M H, et al Flexural behavior of hybrid precast concrete beams with H-steel beams at both ends[J]. Engineering Structures, 2010, 32 (9): 2940- 9
doi: 10.1016/j.engstruct.2010.05.013
8 YANG K H, SEO E A, HONG S H Cyclic flexural tests of hybrid steel: precast concrete beams with simple connection elements[J]. Engineering Structures, 2016, 118: 344- 356
doi: 10.1016/j.engstruct.2016.03.045
9 郭小农, 高舒羽, 裴进玉, 等 预制混凝土梁端预埋槽钢节点静力性能试验[J]. 同济大学学报: 自然科学版, 2017, 45 (9): 1258- 1264
GUO Xiao-nong, GAO Shu-yu, PEI Jin-yu, et al Experimental study on static performance of embedded channel joints of precast concrete beams[J]. Journal of Tongji University: Natural Science, 2017, 45 (9): 1258- 1264
doi: 10.11908/j.issn.0253-374x.2017.09.002
10 张锡治, 章少华, 牛四欣, 等 钢-混凝土预制混合梁受力性能分析[J]. 建筑结构学报, 2019, 40 (4): 47- 55
ZHANG Xi-zhi, ZHANG Shao-hua, NIU Si-xin, et al Analysis on mechanical performance of precast hybrid steel-concrete beam[J]. Journal of Building Structures, 2019, 40 (4): 47- 55
11 HAN L H, LI W Seismic performance of CFST column to steel beam joint with RC slab: experiments[J]. Journal of Constructional Steel Research, 2010, 66 (11): 1374- 1386
doi: 10.1016/j.jcsr.2010.05.003
12 Federal Emergency Management Agency. Recommended seismic design criteria for new steel moment-frame buildings: FEMA—350[S]. Washington D C: SAC Joint Venture, 2000.
13 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010 [S]. 北京: 中国建筑工业出版社, 2017.
14 中华人民共和国国家质量监督检验检疫总局. 金属材料拉伸试验: 第1部分: 室温试验方法: GB/T 228.1 [S]. 北京: 中国标准出版社, 2010.
15 聂建国, 王宇航, 陶慕轩, 等 钢管混凝土叠合柱-钢筋混凝土梁外加强环节点抗震性能试验研究[J]. 建筑结构学报, 2012, 33 (7): 88- 97
NIE Jian-guo, WANG Yu-hang, TAO Mu-xuan, et al Experimental study on seismic behavior of laminated steel tube column-concrete beam joint with outer stiffening ring[J]. Journal of Building Structures, 2012, 33 (7): 88- 97
16 LU C, DONG B Q, PAN J L, et al An investigation on the behavior of a new connection for precast structures under reverse cyclic loading[J]. Engineering Structures, 2018, 169: 131- 140
doi: 10.1016/j.engstruct.2018.05.041
[1] 李通,王新武,时强,布欣,孙海粟. 可替换式偏心支撑钢框架抗震性能[J]. 浙江大学学报(工学版), 2021, 55(9): 1725-1733.
[2] 邱文亮,胡哈斯,田甜,张哲. 影响钢管混凝土组合桥墩抗震性能的结构参数[J]. 浙江大学学报(工学版), 2019, 53(5): 889-898.
[3] 褚云朋,王秀丽,姚勇. 冷弯薄壁型钢墙体-楼板节点抗震性能试验研究[J]. 浙江大学学报(工学版), 2019, 53(4): 732-742.
[4] 徐强, 郑山锁, 李晓昇. 考虑近海环境劣化作用的钢框架节点抗震性能试验研究[J]. 浙江大学学报(工学版), 2018, 52(12): 2314-2321.
[5] 尹世平, 李耀, 杨扬, 叶桃. 纤维编织网增强混凝土加固RC柱抗震性能的影响因素[J]. 浙江大学学报(工学版), 2017, 51(5): 904-913.
[6] 韩冬, 布欣, 王新武, 蒋沧如. 空间剖分T型钢梁柱连接角柱节点抗震试验[J]. 浙江大学学报(工学版), 2017, 51(2): 287-296.
[7] 李英民, 杨龙, 刘烁宇, 罗文文. 基于可恢复指标的结构损伤机制评价方法[J]. 浙江大学学报(工学版), 2017, 51(11): 2197-2206.
[8] 余志武, 彭晓丹, 国巍, 彭妙培. 装配式剪力墙U型套箍连接节点抗震性能[J]. 浙江大学学报(工学版), 2015, 49(5): 975-984.
[9] 刘逸祥, 童根树, 张磊. 耐火钢圆钢管混凝土柱耐火极限和承载力[J]. 浙江大学学报(工学版), 2015, 49(2): 208-217.
[10] 刘逸祥, 童根树, 张磊. 耐火钢-钢管混凝土柱的防火保护层厚度[J]. 浙江大学学报(工学版), 2015, 49(12): 2387-2396.
[11] 王琼,邓华. 罕遇地震下弦支穹顶的弹塑性动力响应分析[J]. J4, 2013, 47(11): 1889-1895.
[12] 殷平,王彤,谢旭. 考虑桥墩轴力变化影响的刚构桥近场地震反应[J]. J4, 2013, 47(11): 1896-1903.
[13] 李玉荣 沈金 裘涛 孙炳楠 秦从律. 型钢混凝土梁式转换节点抗震性能研究[J]. J4, 2006, 40(1): 96-102.
[14] 秦从律 张爱晖. 基于截面纤维模型的弹塑性时程分析方法[J]. J4, 2005, 39(7): 1003-1008.
[15] 王银根 伍连敏 杨骊先 孙柄楠. 混凝土双向板碳纤维布加固的受力性能研究[J]. J4, 2005, 39(1): 81-86.