航空航天工程 |
|
|
|
|
密集观测场景下的敏捷成像卫星任务规划方法 |
马一凡1,2( ),赵凡宇1,2,*( ),王鑫1,2,金仲和1,2 |
1. 浙江大学 微小卫星研究中心,浙江 杭州 310027 2. 浙江大学 浙江省微纳卫星研究重点实验室,浙江 杭州 310027 |
|
Agile imaging satellite task planning method for intensive observation |
Yi-fan MA1,2( ),Fan-yu ZHAO1,2,*( ),Xin WANG1,2,Zhong-he JIN1,2 |
1. Micro-satellite Research Center, Zhejiang University, Hangzhou 310027, China 2. Zhejiang Key Laboratory of Micro-nano Satellite Research, Zhejiang University, Hangzhou 310027, China |
引用本文:
马一凡,赵凡宇,王鑫,金仲和. 密集观测场景下的敏捷成像卫星任务规划方法[J]. 浙江大学学报(工学版), 2021, 55(6): 1215-1224.
Yi-fan MA,Fan-yu ZHAO,Xin WANG,Zhong-he JIN. Agile imaging satellite task planning method for intensive observation. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1215-1224.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.06.023
或
https://www.zjujournals.com/eng/CN/Y2021/V55/I6/1215
|
1 |
谢平, 杜永浩, 姚锋, 等 敏捷成像卫星调度问题技术综述[J]. 宇航学报, 2019, 40 (2): 127- 138 XIE Ping, DU Yong-hao, YAO Feng, et al Literature review for autonomous scheduling technology of agile earth observation satellites[J]. Journal of Astronautics, 2019, 40 (2): 127- 138
|
2 |
郭浩, 邱涤珊, 伍国华, 等 基于改进蚁群算法的敏捷成像卫星任务调度方法[J]. 系统工程理论与实践, 2012, 32 (11): 2533- 2539 GUO Hao, QIU Di-shan, WU Guo-hua, et al Agile imaging satellite task scheduling method based on improved ant colony algorithm[J]. System Engineering Theory and Practice, 2012, 32 (11): 2533- 2539
doi: 10.3969/j.issn.1000-6788.2012.11.023
|
3 |
邱涤珊, 郭浩, 贺川, 等 敏捷成像卫星多星密集任务调度方法[J]. 航空学报, 2013, 34 (4): 882- 889 QIU Di-shan, GUO Hao, HE Chuan, et al Agile imaging satellite multi-satellite intensive task scheduling method[J]. Acta Aeronautica ET Astronautica Sinica, 2013, 34 (4): 882- 889
|
4 |
SHE Y, LI S, LI Y, et al Slew path planning of agile-satellite antenna pointing mechanism with optimal real-time data transmission performance[J]. Aerospace Science and Technology, 2019, 90 (7): 103- 114
|
5 |
DU B, LI S, SHE Y, et al Area targets observation mission planning of agile satellite considering the drift angle constraint[J]. Journal of Astronomical Telescopes, Instruments and Systems, 2018, 4 (4): 1- 19
|
6 |
SHE Y, LI S, ZHAO Y Onboard mission planning for agile satellite using modified mixed-integer linear programming[J]. Aerospace Science and Technology, 2017, 72: 204- 216
|
7 |
DU B, LI S A new multi-satellite autonomous mission allocation and planning method[J]. Acta Astronautica, 2019, 163: 287- 298
doi: 10.1016/j.actaastro.2018.11.001
|
8 |
郭浩, 伍国华, 邱涤珊, 等 敏捷成像卫星密集任务聚类方法[J]. 系统工程与电子技术, 2012, 34 (5): 931- 935 GUO Hao, WU Guo-hua, QIU Di-shan, et al Agile imaging satellite intensive task clustering method[J]. Systems Engineering and Electronics, 2012, 34 (5): 931- 935
doi: 10.3969/j.issn.1001-506X.2012.05.14
|
9 |
张铭, 王晋东, 卫波 基于改进烟花算法的密集任务成像卫星调度方法[J]. 计算机应用, 2018, (9): 2712- 2719 ZHANG Ming, WANG Jin-dong, WEI Bo Intensive mission imaging satellite scheduling method based on improved fireworks algorithm[J]. Journal of Computer Applications, 2018, (9): 2712- 2719
|
10 |
耿远卓, 郭延宁, 李传江, 等 敏捷凝视卫星密集点目标聚类与最优观测规划[J]. 控制与决策, 2020, 35 (3): 613- 621 GENG Yuan-zhuo, GUO Yan-ning, LI Chuan-jiang, et al Agile gaze satellite cluster and optimal observation planning[J]. Control and Decision, 2020, 35 (3): 613- 621
|
11 |
MNIH V, BADIA A P, MIRZA M, et al. Asynchronous methods for deep reinforcement learning [EB/OL]. [2020-05-29]. https://arxiv.org/abs/1602.01783.
|
12 |
LI S, LI W, COOK C, et al. Independently recurrent neural network (IndRNN): building a longer and deeper RNN[EB/OL]. [2020-05-29]. https://arxiv.org/abs/1803.04831v3.
|
13 |
杨文明, 褚伟杰 在线医疗问答文本的命名实体识别[J]. 计算机系统应用, 2019, 28 (2): 10- 16 YANG Wen-ming, CHU Wei-jie Named entity recognition of online medical question and answer text[J]. Computer System and Applications, 2019, 28 (2): 10- 16
|
14 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[EB/OL]. [2020-05-29]. https://arxiv.org/abs/1502.03167.
|
15 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016.
|
16 |
VINYALS O, FORTUNATO M, JAITLY N. Pointer networks[C]// International Conference on Neural Information Processing Systems. Istanbul: MIT Press, 2015.
|
17 |
NAZARI M, OROOJLOOY A, SNYDER L, et al. Reinforcement learning for solving the vehicle routing problem[EB/OL]. [2020-02-29]. https://arxiv.org/abs/1802.04240.
|
18 |
KINGMA D, BA J. Adam: a method for stochastic optimization[EB/OL]. [2020-05-29]. https://arxiv.org/abs/1412.6980.
|
19 |
WILLIAMS R J Simple statistical gradient-following algorithms for connectionist reinforcement learning[J]. Machine Learning, 1992, 8 (3/4): 229- 256
doi: 10.1023/A:1022672621406
|
20 |
CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. [2020-05-29]. https://arxiv.org/abs/1412.3555.
|
21 |
王海蛟, 贺欢, 杨震 敏捷成像卫星调度的改进量子遗传算法[J]. 宇航学报, 2018, 39 (11): 1266- 1274 WANG Hai-jiao, HE Huan, YANG Zhen Scheduling of agile satellites based on an improved quantum genetic algorithm[J]. Journal of Astronautics, 2018, 39 (11): 1266- 1274
|
22 |
丁祎男, 田科丰, 王淑一 基于遗传禁忌混合算法的敏捷卫星任务规划[J]. 空间控制技术与应用, 2019, 45 (6): 27- 32 DING Yi-nan, TIAN Ke-feng, WANG Shu-yi Mission scheduling for agile earth observation satellite based on genetic-tabu hybrid algorithm[J]. Aerospace Control and Application, 2019, 45 (6): 27- 32
doi: 10.3969/j.issn.1674-1579.2019.06.004
|
23 |
赵凡宇. 航天器多目标观测任务调度与规划方法研究[D]. 北京: 北京理工大学, 2015. ZHAO Fan-yu. Research on scheduling and planning methods of spacecraft multi-object observation mission[D]. Beijing: Beijing Institute of Technology, 2015.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|