计算机与控制工程 |
|
|
|
|
采用Anchor-Free网络结构的实时火灾检测算法 |
晋耀( ),张为*( ) |
天津大学 微电子学院,天津 300072 |
|
Real-time fire detection algorithm with Anchor-Free network architecture |
Yao JIN( ),Wei ZHANG*( ) |
School of Microelectronics, Tianjin University, Tianjin 300072, China |
1 |
SEEBAMRUNGSAT J, PRAISING S, RIYAMONGKOL P. Fire detection in the buildings using image processing [C]// 2014 3rd ICT International Student Project Conference. Thailand: IEEE, 2014: 95-98.
|
2 |
HASHEMZADEH M, ZADEMEHDI A Fire detection for video surveillance applications using ICA K-medoids-based color model and efficient spatio-temporal visual features[J]. Expert Systems with Applications, 2019, 130: 60- 78
doi: 10.1016/j.eswa.2019.04.019
|
3 |
KIM B, LEE J A video-based fire detection using deep learning models[J]. Applied Sciences, 2019, 9 (14): 2862
doi: 10.3390/app9142862
|
4 |
WU S, ZHANG L. Using popular object detection methods for real time forest fire detection [C]// 2018 11th International Symposium on Computational Intelligence and Design. Hangzhou: IEEE, 2018: 280-284.
|
5 |
LAW H, DENG J. CornerNet: detecting objects as paired keypoints [C]// Proceedings of the European Conference on Computer Vision. Munich: Springer, 2018: 734-750.
|
6 |
ZHU C, HE Y, SAVVIDES M. Feature selective anchor-free module for single-shot object detection [C]// Proceedings of the IEEE International Conference on Computer Vision. Long Beach: IEEE, 2019: 840-849.
|
7 |
TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection [C]// Proceedings of the IEEE International Conference on Computer Vision. Seoul: IEEE, 2019: 9627-9636.
|
8 |
KONG T, SUN F, LIU H, et al. FoveaBox: beyond anchor-based object detector [EB/OL]. [2019-04-08]. https://arxiv.org/ftp/arxiv/papers/1904/1904.03797.pdf.
|
9 |
SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520.
|
10 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988.
|
11 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2117-2125.
|
12 |
DAI J, QI H, XIONG Y, et al. Deformable convolutional networks [C]// Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 764-773.
|
13 |
SUN F, KONG T, HUANG W, et al Feature pyramid reconfiguration with consistent loss for object detection[J]. IEEE Transactions on Image Processing, 2019, 28 (10): 5041- 5051
doi: 10.1109/TIP.2019.2917781
|
14 |
NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines [C]// Proceedings of the 27th International Conference on Machine Learning. Haifa: ACM, 2010: 807-814.
|
15 |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
|
16 |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: common objects in context [C]// European Conference on Computer Vision. Swizterland: Springer, 2014: 740-755.
|
17 |
REDMON J, FARHADI A. Yolov3: an incremental improvement [EB/OL]. [2018-04-08]. https://arxiv.org/pdf/1804.02767.pdf.
|
18 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]// European Conference on Computer Vision. Amsterdam: Springer, 2016: 21-37.
|
19 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
20 |
NEWELL A, YANG K, DENG J. Stacked hourglass networks for human pose estimation [C]// European Conference on Computer Vision. Amsterdam: Springer, 2016: 483-499.
|
21 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [C]// International Conference on Learning Representations. San Diego: ICLR, 2015: 1–14.
|
22 |
BORGES P V K, IZQUIERDO E A probabilistic approach for vision-based fire detection in videos[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20 (5): 721- 731
doi: 10.1109/TCSVT.2010.2045813
|
23 |
TRUONG T X, KIM J M Fire flame detection in video sequences using multi-stage pattern recognition techniques[J]. Engineering Applications of Artificial Intelligence, 2012, 25 (7): 1365- 1372
doi: 10.1016/j.engappai.2012.05.007
|
24 |
吴茜茵, 严云洋, 杜静, 等 多特征融合的火焰检测算法[J]. 智能系统学报, 2015, 10 (2): 240- 247 WU Xi-yin, YAN Yun-yang, DU Jing, et al Fire detection based on fusion of multiple features[J]. CAAI Transactions on Intelligent Systems, 2015, 10 (2): 240- 247
|
25 |
KONG S G, JIN D, LI S, et al Fast fire flame detection in surveillance video using logistic regression and temporal smoothing[J]. Fire Safety Journal, 2016, 79: 37- 43
doi: 10.1016/j.firesaf.2015.11.015
|
26 |
梅建军, 张为 基于ViBe与机器学习的早期火灾检测算法[J]. 光学学报, 2018, 38 (7): 60- 67 MEI Jian-jun, ZHANG Wei Early fire detection algorithm based on ViBe and machine learning[J]. Acta Optica Sinica, 2018, 38 (7): 60- 67
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|