Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (5): 997-1005    DOI: 10.3785/j.issn.1008-973X.2019.05.022
机械工程、化学工程     
连续三相喷射环流反应器的实验和数值模拟
高用祥(),洪都,成有为*(),王丽军,李希
浙江大学 化学工程与生物工程学院,浙江 杭州 310027
Experimental and numerical simulation on sequential three phase jet-loop reactor
Yong-xiang GAO(),Du HONG,You-wei CHENG*(),Li-jun WANG,Xi LI
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1459 KB)   HTML
摘要:

利用Pavlov管和电导探针分别测量含小颗粒(Stokes数小于1.0)的连续气液固三相喷射环流反应器内轴向液速和气体体积分数分布. 提出大气泡-小气泡-浆态相三相流体力学模型,以模拟三相喷射环流反应器的流体力学行为,对大气泡相和小气泡相分别考虑尾涡加速和气泡阻碍效应并修正其曳力. 对于上升区和下降区,流场模拟结果均与实验结果较吻合. 利用模型预测不同固体体积分数下的气体体积分数与轴向液速分布,结果表明,在考虑的固体体积分数范围内,气体体积分数随固体体积分数增加而下降,液体循环速度随固体体积分数增加而略有上升,其原因主要是反应器内平均气泡直径随固体体积分数增加而增大,进而导致气泡浮升速度加大并增强周围流体的加速运动.

关键词: 多相流计算流体力学(CFD)喷射环流反应器气体体积分数轴向液速    
Abstract:

Distribution of axial liquid velocity and gas volume fraction in a sequential gas-liquid-solid three phase jet-loop reactor containing small particles with Stokes number less than 1.0 were measured by Pavlov tube and conductivity probe, respectively. A large bubble-small bubble-slurry three phase fluid dynamic model, incorporating the respective consideration of wake acceleration and bubble hindrance effect for large and small bubble phases in the modified drag forces, was developed to simulate the hydrodynamics in a three phase jet-loop reactor. The numerical results of flow filed in the riser and downcomer were in good agreement with the experimental results. The model was used to predict the axial liquid velocity and gas volume fraction in different solid volume fractions. Results showed that the gas volume fraction decreased while the liquid circulation velocity increased slightly with the increase of solid volume fraction, under the considered solid volume fraction range. The reason is that the average bubble diameter increases when solid volume fraction rises, which increases the bubble rise velocity and enhances the accelerated movement of the surrounding fluid.

Key words: multiphase flow    computational fluid dynamics (CFD)    jet-loop reactor    gas volume fraction    axial liquid velocity
收稿日期: 2018-10-15 出版日期: 2019-05-17
CLC:  TQ 21  
通讯作者: 成有为     E-mail: gao_yongxiang@zju.edu.cn;ywcheng@zju.edu.cn
作者简介: 高用祥(1990—),男,博士生,从事多相流反应工程研究. orcid.org/0000-0003-3159-9493. E-mail: gao_yongxiang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
高用祥
洪都
成有为
王丽军
李希

引用本文:

高用祥,洪都,成有为,王丽军,李希. 连续三相喷射环流反应器的实验和数值模拟[J]. 浙江大学学报(工学版), 2019, 53(5): 997-1005.

Yong-xiang GAO,Du HONG,You-wei CHENG,Li-jun WANG,Xi LI. Experimental and numerical simulation on sequential three phase jet-loop reactor. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 997-1005.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.05.022        http://www.zjujournals.com/eng/CN/Y2019/V53/I5/997

图 1  喷射环流反应器实验装置图
尺寸(径向×轴向) $\overline {{\varphi _{\rm{g}}}}/\text{%} $ ucir/(m·s?1
25×210 15.5 0.494
38×325 15.8 0.511
50×420 15.9 0.516
表 1  反应器计算网格尺寸无关性分析
图 2  反应器主体网格示意图
图 3  不同固体体积分数下全塔平均气体体积分数和循环液速的实验和模拟结果对比
图 4  气体体积分数径向分布的实验和模拟结果对比
图 5  轴向液速径向分布实验和模拟结果比较
图 6  不同固体体积分数下气体体积分数云图
图 7  不同固体体积分数下轴向液速云图
图 8  固体体积分数对气体体积分数径向分布的影响
图 9  固体体积分数对轴向液速径向分布的影响
图 10  固体体积分数对循环液速的影响
图 11  固体体积分数对全塔平均气体体积分数的影响
图 12  固体体积分数对平均气泡直径的影响
1 BLENKE H. Loop reactors [M]. Advances in biochemical engineering. Berlin: Springer, 1979: 121–214.
2 杨高东, 刘小鹃, 吴平铿, 等 喷射环流反应器应用研究进展[J]. 化工进展, 2011, 30 (9): 1878- 1883
YANG Gao-dong, LIU Xiao-juan, WU Ping-keng, et al Research progress of application of jet-loop-reactor[J]. Chemical Industry and Engineering Progress, 2011, 30 (9): 1878- 1883
3 GARCIA-CALVO E, RODRIGUEZ A, PRADOS A, et al A fluid dynamic model for three-phase airlift reactors[J]. Chemical Engineering Science, 1999, 54 (13/14): 2359- 2370
doi: 10.1016/S0009-2509(98)00302-9
4 JIA X, WEN J, FENG W, et al Local hydrodynamics modeling of a gas-liquid-solid three-phase airlift loop reactor[J]. Industrial and Engineering Chemistry Research, 2007, 46 (15): 5210- 5220
doi: 10.1021/ie061697l
5 SADEGHIZADEH A, RAHIMI R, DAD F F Computational fluid dynamics modeling of carbon dioxide capture from air using biocatalyst in an airlift reactor[J]. Bioresource Technology, 2018, 253: 154- 164
doi: 10.1016/j.biortech.2018.01.025
6 张宝泉, 胡宗定 喷射式环流反应器的研究[J]. 化工学报, 1989, (6): 733- 740
ZHANG Bao-quan, HU Zong-ding Experimental study of jet-loop reactor[J]. Journal of Chemical Industry and Engineering (China), 1989, (6): 733- 740
7 FADAVI A, CHISTI Y Gas-liquid mass transfer in a novel forced circulation loop reactor[J]. Chemical Engineering Journal, 2005, 112 (1–3): 73- 80
doi: 10.1016/j.cej.2005.06.009
8 FADAVI A, CHISTI Y Gas holdup and mixing characteristics of a novel forced circulation loop reactor[J]. Chemical Engineering Journal, 2007, 131 (1–3): 105- 111
doi: 10.1016/j.cej.2006.12.037
9 PADMAVATHI G, RAO K R Hydrodynamic characteristics of reversed flow jet loop reactor as a gas-liquid solid contactor[J]. Chemical Engineering Science, 1991, 46 (12): 3293- 3296
doi: 10.1016/0009-2509(91)85031-R
10 VELAN M, RAMANUJAM T K Gas-liquid mass-transfer in a down flow jet loop reactor[J]. Chemical Engineering Science, 1992, 47 (9–11): 2871- 2876
doi: 10.1016/0009-2509(92)87144-F
11 HEITHOFF S, KüCK U D, VOLKMER P, et al Modelling gas-liquid mass transfer in a two-phase jet flow[J]. Canadian Journal of Chemical Engineering, 2018, 96 (11): 2484- 2491
doi: 10.1002/cjce.v96.11
12 卢浩然, 高用祥, 成有为, 等 喷射型环流反应器中气含率和液速的分布[J]. 高校化学工程学报, 2017, 31 (5): 1088- 1095
LU Hao-ran, GAO Yong-xiang, CHENG You-wei, et al Gas holdup and liquid velocity distribution in a jet loop reactor[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31 (5): 1088- 1095
13 GAO Y X, HONG D, LU H R, et al Gas holdup and liquid velocity distributions in the up flow jet-loop reactor[J]. Chemical Engineering Research and Design, 2018, 136: 94- 104
doi: 10.1016/j.cherd.2018.05.005
14 谭朝尹, 孙勤, 杨阿三, 等 喷射式环流反应器内流速分布的实验研究[J]. 化学工程, 2012, 40 (8): 61- 64
TAN Chao-yin, SUN Qin, YANG A-san, et al Experimental research on velocity distribution within jet loop reactor[J]. Chemical Engineering (China), 2012, 40 (8): 61- 64
15 FAN L S, HWANG S J, MATSUURA A Hydrodynamic behavior of a draft tube gas-liquid solid spouted bed[J]. Chemical Engineering Science, 1984, 39 (12): 1677- 1688
doi: 10.1016/0009-2509(84)80101-3
16 PIRONTI F F, MEDINA V R, CALVO R, et al Effect of draft tube position on the hydrodynamics of a draft tube slurry bubble column[J]. Chemical Engineering Journal, 1995, 60 (1–3): 155- 160
17 王一平, 胡宗定 喷射环流三相流化床反应器轴向液速分布的研究[J]. 化学反应工程与工艺, 1990, 6 (1): 57- 62
WANG Yi-ping, HU Zong-ding Study on the liquid velocity distribution along the axis of a jet loop three-phase fluidized bed reactor[J]. Chemical Reaction Engineering and Technology, 1990, 6 (1): 57- 62
18 王方方, 杨阿三, 孙勤, 等 喷射环流反应器内部过滤操作研究[J]. 高校化学工程学报, 2015, 29 (6): 1502- 1506
WANG Fang-fang, YANG A-san, SUN Qin, et al Operating performance of draft tube filtrator within a jet loop reactor[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29 (6): 1502- 1506
doi: 10.3969/j.issn.1003-9015.2015.06.031
19 SZAFRAN R G, KMIEC A Application of CFD modelling technique in engineering calculations of three-phase flow hydrodynamics in a jet-loop reactor[J]. International Journal of Chemical Reactor Engineering, 2004, 2 (1): A30
20 张佳宝, 崔丽杰, 杨宁 曳力模型和湍流模型对内环流反应器数值模拟的影响[J]. 化工学报, 2018, 69 (1): 389- 395
ZHANG Jia-bao, CUI Li-jie, YANG Ning Effects of drag model and turbulence model on simulation of air-lift internal-loop reactor[J]. Journal of Chemical Industry and Engineering (China), 2018, 69 (1): 389- 395
21 KRISHNA R, VAN BATEN J M, URSEANU M I Three-phase Eulerian simulations of bubble column reactors operating in the churn-turbulent regime: a scale up strategy[J]. Chemical Engineering Science, 2000, 55 (16): 3275- 3286
doi: 10.1016/S0009-2509(99)00582-5
22 HEIJNEN J J, HOLS J, VANDERLANS R, et al A simple hydrodynamic model for the liquid circulation velocity in a full-scale two-and three-phase internal airlift reactor operating in the gas recirculation regime[J]. Chemical Engineering Science, 1997, 52 (15): 2527- 2540
doi: 10.1016/S0009-2509(97)00070-5
23 HOOSHYAR N, VAN OMMEN J R, HAMERSMA P J, et al Dynamics of single rising bubbles in neutrally buoyant liquid-solid suspensions[J]. Physical Review Letters, 2013, 110 (24): 244501
doi: 10.1103/PhysRevLett.110.244501
24 MANJREKAR O N, DUDUKOVIC M P Application of a 4-point optical probe to a slurry bubble column reactor[J]. Chemical Engineering Science, 2015, 131: 313- 322
doi: 10.1016/j.ces.2015.03.027
25 SIEGEL M H, MERCHUK J C, SCHUGERL K Air-lift reactor analysis: interrelationships between riser, downcomer, and gas-liquid separator behavior, including gas recirculation effects[J]. AIChE Journal, 1986, 32 (10): 1585- 1596
26 BESAGNI G, INZOLI F, ZIEGENHEIN T, et al Computational fluid-dynamic modeling of the pseudo-homogeneous flow regime in large-scale bubble columns[J]. Chemical Engineering Science, 2017, 160: 144- 160
27 SCHILLER V L A drag coefficient correlation[J]. Zeitschrift des Vereins Deutscher Ingenieure, 1933, 77: 318- 320
28 WANG T F, WANG J F, JIN Y A CFD-PBM coupled model for gas-liquid flows[J]. AIChE Journal, 2006, 52 (1): 125- 140
29 ROGHAIR I, ANNALAND M V S, KUIPERS H J A M Drag force and clustering in bubble swarms[J]. AIChE Journal, 2013, 59 (5): 1791- 1800
doi: 10.1002/aic.13949
30 TALVY S, COCKX A, LINE A Modeling hydrodynamics of gas-liquid airlift reactor[J]. AIChE Journal, 2007, 53 (2): 335- 353
31 ANTAL S P, LAHEY R T, FLAHERTY J E Analysis of phase distribution in fully-developed laminar bubbly 2-phase flow[J]. International Journal of Multiphase Flow, 1991, 17 (5): 635- 652
doi: 10.1016/0301-9322(91)90029-3
32 SATO Y, SADATOMI M, SEKOGUCHI K Momentum and heat transfer in two-phase bubble flow: I. theory[J]. International Journal of Multiphase Flow, 1981, 7 (2): 167- 177
doi: 10.1016/0301-9322(81)90003-3
33 THOMAS D G Transport characteristics of suspension: VIII. a note on the viscosity of Newtonian suspensions of uniform spherical particles[J]. Journal of Colloid Science, 1965, 20 (3): 267- 277
doi: 10.1016/0095-8522(65)90016-4
34 KRISHNA R, URSEANU M I, VAN BATEN J M, et al Rise velocity of a swarm of large gas bubbles in liquids[J]. Chemical Engineering Science, 1999, 54 (2): 171- 183
doi: 10.1016/S0009-2509(98)00245-0
35 REILLY I G, SCOTT D S, DEBRUIJN T, et al The role of gas-phase momentum in determining gas holdup and hydrodynamic flow regimes in bubble-column operations[J]. Canadian Journal of Chemical Engineering, 1994, 72 (1): 3- 12
doi: 10.1002/cjce.v72:1
[1] 王悦荟,刘聪,王鹏飞,许忠斌,阮晓东,付新. 蒸汽发生器致畸变入流对核主泵流动性能的影响[J]. 浙江大学学报(工学版), 2019, 53(11): 2076-2084.
[2] 陆燕宁,章洪涛,许岩韦,朱燕群,万凯迪,邵哲如,王智化. 烟气再循环对生物质炉排炉燃烧影响的数值模拟[J]. 浙江大学学报(工学版), 2019, 53(10): 1898-1906.
[3] 陈伟, 秦仙蓉, 杨志刚. 塔式起重机塔身和起重臂的风载荷特征分析[J]. 浙江大学学报(工学版), 2018, 52(12): 2262-2270.
[4] 孙婧元, 楼佳明, 黄正梁, 王靖岱, 蒋斌波, 阳永荣. 液体雾化效果的检测及流体力学模拟[J]. J4, 2012, 46(2): 218-225.
[5] 李强, 刘淑莲, 于桂昌, 潘晓弘, 郑水英. 非线性转子-轴承耦合系统润滑及稳定性分析[J]. J4, 2012, 46(10): 1729-1736.
[6] 周胤,俞亚南,段园煜. 金属压型板屋顶通风层隔热的数值模拟[J]. J4, 2011, 45(1): 112-117.
[7] 曹玉春 李晓东 严建华 池涌 岑可法. 管式布风流化床密相区气固流动特性数值模拟[J]. J4, 2005, 39(6): 795-800.