化学工程、能源工程 |
|
|
|
|
预测生物质热解动力学参数的随机森林模型 |
邢江宽(),王海鸥,罗坤*(),白云,樊建人 |
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027 |
|
Random forest model for predicting kinetic parameters of biomass devolatilization |
Jiang-kuan XING(),Hai-ou WANG,Kun LUO*(),Yun BAI,Jian-ren FAN |
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China |
引用本文:
邢江宽,王海鸥,罗坤,白云,樊建人. 预测生物质热解动力学参数的随机森林模型[J]. 浙江大学学报(工学版), 2019, 53(3): 605-612.
Jiang-kuan XING,Hai-ou WANG,Kun LUO,Yun BAI,Jian-ren FAN. Random forest model for predicting kinetic parameters of biomass devolatilization. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 605-612.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.03.023
或
http://www.zjujournals.com/eng/CN/Y2019/V53/I3/605
|
1 |
GOYAL H B, SEAL D, SAXENA R C Bio-fuels from thermochemical conversion of renewable resources: a review[J]. Renewable and Sustainable Energy Reviews, 2008, 12 (2): 504- 517
doi: 10.1016/j.rser.2006.07.014
|
2 |
CAI J M, LIU R H New distributed activation energy model: numerical solution and application to pyrolysis kinetics of some types of biomass[J]. Bioresource Technology, 2008, 99 (8): 2795- 2799
doi: 10.1016/j.biortech.2007.06.033
|
3 |
SHENG C, AZEVEDO J Modeling biomass devolatilization using the chemical percolation devolatilization model for the main components[J]. Proceedings of the Combustion Institute, 2002, 29 (1): 407- 414
doi: 10.1016/S1540-7489(02)80054-2
|
4 |
BESTE A, BUCHANAN A C Kinetic simulation of the thermal degradation of phenethyl phenyl ether, a model compound for the β-O-4 linkage in lignin [J]. Chemical Physics Letters, 2012, 550 (8): 19- 24
|
5 |
COUHERT C, COMMANDRE J M, SALVADOR S Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin?[J]. Fuel, 2009, 88 (3): 408- 417
doi: 10.1016/j.fuel.2008.09.019
|
6 |
PETERS B Prediction of pyrolysis of pistachio shells based on its components hemicellulose, cellulose and lignin[J]. Fuel Processing Technology, 2011, 92 (10): 1993- 1998
doi: 10.1016/j.fuproc.2011.05.023
|
7 |
KIM S W Prediction of product distribution in fine biomass pyrolysis in fluidized beds based on proximate analysis[J]. Bioresource Technology, 2015, 175: 275- 283
doi: 10.1016/j.biortech.2014.10.107
|
8 |
LECUN Y, BOSER B E, DENKER J S Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1 (4): 541- 551
doi: 10.1162/neco.1989.1.4.541
|
9 |
HO T K. Random decision forests [C] // Proceedings of the 3rd ICDAR. Montreal: IEEE, 1995: 278–282.
|
10 |
XING J K, LUO K, HEINZ P, et al Predicting kinetic parameters for coal devolatilization by means of artificial neural networks[J]. Proceedings of the Combustion Institute, 2018,
|
11 |
LUO K, XING J K, BAI Y, et al Prediction of product distribution in coal devolatilization by an artificial neural network model[J]. Combustion and Flame, 2018, 193: 283- 294
doi: 10.1016/j.combustflame.2018.03.016
|
12 |
LEI C K A random forest approach for predicting coal spontaneous combustion[J]. Fuel, 2018, 223: 63- 73
doi: 10.1016/j.fuel.2018.03.005
|
13 |
SUNPHORKA S, CHALERMSINSUWAN B, PIUMSOMBOON P Artificial neural network model for the prediction of kinetic parameters of biomass pyrolysis from its constituents[J]. Fuel, 2017, 193: 142- 158
doi: 10.1016/j.fuel.2016.12.046
|
14 |
SLOPIECKA K, BARTOCCI P, FANTOZZI F Thermogravimetric analysis and kinetic study of poplar wood pyrolysis[J]. Applied Energy, 2012, 97: 491- 497
doi: 10.1016/j.apenergy.2011.12.056
|
15 |
XU T T, XU F, HU Z Q, et al Non-isothermal kinetics of biomass-pyrolysis-derived-tar (BPDT) thermal decomposition via thermogravimetric analysis[J]. Energy Conversion and Management, 2017, 138: 452- 460
doi: 10.1016/j.enconman.2017.02.013
|
16 |
COATS A W, REDFERN J P Kinetic parameters from thermogravimetric data[J]. Nature, 1964, 201 (4914): 68- 69
doi: 10.1038/201068a0
|
17 |
7D-Soft High Technology Inc. 1st Opt Manual, Release 6.0 (2014)(EB/OL). (2014-01-10) [2018-08-1]. http://www.7dsoft.com/.
|
18 |
FAN H, ZHANG Y, SU Z, et al A dynamic mathematical model of an ultrasupercritical coal fired once-through boiler-turbine unit[J]. Applied Energy, 2017, 189: 654- 666
|
19 |
CHEN Z H, ZHU Q J, WANG X, et al Pyrolysis behaviors and kinetic studies on Eucalyptus residues using thermogravimetric analysis[J]. Energy Conversion and Management, 2015, 105: 251- 259
doi: 10.1016/j.enconman.2015.07.077
|
20 |
SUNGSUK P, CHAYAPOM S, SUNPHORKA S, et al Prediction of pyrolysis kinetic parameters from biomass constituents based on simplex-lattice mixture design[J]. Chinese Journal of Chemical Engineering, 2016, 24 (4): 535- 542
doi: 10.1016/j.cjche.2016.01.004
|
21 |
HU Q, YANG H P, XU H S, et al Thermal behavior and reaction kinetics analysis of pyrolysis and subsequent in-situ gasification of torrefied biomass pellets[J]. Energy Conversion and Management, 2018, 161: 205- 214
doi: 10.1016/j.enconman.2018.02.003
|
22 |
MA J, CHENG J C P Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests[J]. Applied Energy, 2016, 183: 193- 201
doi: 10.1016/j.apenergy.2016.08.096
|
23 |
DESPANGE F, MASSART D L Neural networks in multivariate calibration[J]. Analyst, 1998, 123 (11): 157- 178
doi: 10.1039/a805562i
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|