Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (3): 598-604    DOI: 10.3785/j.issn.1008-973X.2019.03.022
化学工程、能源工程     
聚酰基硫脲基因输送体系的构建与评价
王玥(),周珠贤,申有青*()
浙江大学 化学工程与生物工程学院,浙江 杭州 310027
Construction and evaluation of gene delivery system based on polyacylthiourea
Yue WANG(),Zhu-xian ZHOU,You-qing SHEN*()
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1606 KB)   HTML
摘要:

基于新型树枝状大分子聚酰基硫脲(PATU),通过巯基-烯Michael加成反应得到表面N, N-二甲基半胱胺修饰的聚酰基硫脲(PATU-DMCA). 核磁结果表明:PATU-DMCA树枝状结构正确且完整. 琼脂糖凝胶电泳及动态光散射粒径测定结果表明:PATU-DMCA在低代数、低氮磷摩尔比条件下可以有效包载DNA,形成粒径为60~100 nm、Zeta电位为10~20 mV的纳米复合物. 在人宫颈癌细胞HeLa和人肺癌细胞A549上,低氮磷摩尔比的PATU-DMCA的无血清转染效率优于经典的树枝状大分子基因载体聚酰胺胺,而两者细胞毒性相当. HeLa上的亚细胞分布结果表明:纳米复合物在细胞水平的转运过程基本包括黏附细胞膜、内吞入胞、进入溶酶体,通过“质子海绵”效应从溶酶体逃逸后进入细胞质及细胞核进行转染. PATU-DMCA以及PATU本身在基因输送中均具有很大的潜力.

关键词: 聚酰基硫脲基因输送高效合成转染效率    
Abstract:

N, N-dimethylcysteamine modified PATU (PATU-DMCA) was synthesized through thiol-ene Michael addition reaction based on a novel dendrimer of polyacylthiourea (PATU). NMR results show that the dendrimer structure of PATU-DMCA is correct and integrated. Agarose gel electrophoresis assay and dynamic light scattering results demonstrate that PATU-DMCA of low generations with low molar ratios of N and P can package DNA to form nanoparticles with size of 60~100 nm and Zeta potential of 10~20 mV. In human cervical carcinoma cell HeLa and human lung cancer cell A549, the formed polyplexes with low molar ratios of N and P show higher transfection efficiency in serum-free medium than the classical dendrimer poly (amidoamine), while the cytotoxicity is equal to each other. The subcellular distribution study in HeLa indicate that the intracellular trafficking of the polyplexes include cell membrane adhesion, endocytosis into cell, entering into lysosome, and lysosomal escape via ‘proton sponge effect’ for transfection in cytoplasm and nucleus. Both PATU-DMCA and PATU itself have enormous potential for gene delivery.

Key words: polyacylthiourea    gene delivery    facile synthesis    transfection efficiency
收稿日期: 2018-07-24 出版日期: 2019-03-04
CLC:  R 979.1  
通讯作者: 申有青     E-mail: wangyue_sunshine@163.com;shenyq@zju.edu.cn
作者简介: 王玥(1989—),女,博士生,从事基因药物输送载体设计研究. orcid.org/0000-0002-0275-2113. E-mail: wangyue_sunshine@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王玥
周珠贤
申有青

引用本文:

王玥,周珠贤,申有青. 聚酰基硫脲基因输送体系的构建与评价[J]. 浙江大学学报(工学版), 2019, 53(3): 598-604.

Yue WANG,Zhu-xian ZHOU,You-qing SHEN. Construction and evaluation of gene delivery system based on polyacylthiourea. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 598-604.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.03.022        http://www.zjujournals.com/eng/CN/Y2019/V53/I3/598

图 1  单体对(BMAITC,CA)和表面修饰剂(DMCA)合成PATU-DMCA的过程示意图
图 2  G2~G5 PATU与PATU-DMCA的1H-NMR图谱
图 3  各个代数不同N/P的PATU-DMCA/DNA复合物表征
图 4  G3、G4纳米复合物的TEM图
图 5  PATU-DMCA/DNA复合物在无血清条件下的荧光素酶基因转染效率(对照组:PEI、G3~G5 PAMAM)
图 6  不同质量浓度的PATU-DMCA, PEI, PAMAM 有血清条件下的细胞毒性
图 7  G4 PATU-DMCA / Cy5DNA纳米复合物无血清条件下孵育HeLa细胞的亚细胞分布图
1 CORNU T I, MUSSOLINO C, CATHOMEN T Refining strategies to translate genome editing to the clinic[J]. Nature Medicine, 2017, 23 (4): 415- 423
doi: 10.1038/nm.4313
2 NALDINI L Gene therapy returns to centre stage[J]. Nature, 2015, 526 (7573): 351- 360
doi: 10.1038/nature15818
3 CHENG C J, BAHAL R, BABAR I A, et al MicroRNA silencing for cancer therapy targeted to the tumour microenvironment[J]. Nature, 2015, 518 (7537): 107- 110
doi: 10.1038/nature13905
4 ZHOU Z X, LIU X R, ZHU D C, et al Nonviral cancer gene therapy: delivery cascade and vector nanoproperty integration[J]. Advanced Drug Delivery Reviews, 2017, 115: 115- 154
doi: 10.1016/j.addr.2017.07.021
5 LACHELT U, WAGNER E Nucleic acid therapeutics using polyplexes: a journey of 50 years (and beyond)[J]. Chemical Reviews, 2015, 115 (19): 11043- 11078
doi: 10.1021/cr5006793
6 ZHANG Y, SATTERLEE A, HUANG L In vivo gene delivery by nonviral vectors: overcoming hurdles?[J]. Molecular Therapy, 2012, 20 (7): 1298- 1304
doi: 10.1038/mt.2012.79
7 KESHARWANI P, LYER A K Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery[J]. Drug Discovery Today, 2015, 20 (5): 536- 547
doi: 10.1016/j.drudis.2014.12.012
8 TSCHICHE A, MALHOTRA S, HAAG R Nonviral gene delivery with dendritic self-assembling architectures[J]. Nanomedicine, 2014, 9 (5): 667- 693
doi: 10.2217/nnm.14.32
9 LUO K, HE B, WU Y, et al Functional and biodegradable dendritic macromolecules with controlled architectures as nontoxic and efficient nanoscale gene vectors[J]. Biotechnology Advances, 2014, 32 (4): 818- 830
doi: 10.1016/j.biotechadv.2013.12.008
10 HU J J, HU K, CHENG Y Y Tailoring the dendrimer core for efficient gene delivery[J]. Acta Biomaterialia, 2016, 35: 1- 11
doi: 10.1016/j.actbio.2016.02.031
11 SHCHARBIN D, SHAKHBAZAU A, BRYSZEWSKA M Poly(amidoamine) dendrimer complexes as a platform for gene delivery[J]. Expert Opinion on Drug Delivery, 2013, 10 (12): 1687- 1698
doi: 10.1517/17425247.2013.853661
12 SHAO S Q, ZHOU Q, SI J X, et al A non-cytotoxic dendrimer with innate and potent anticancer and anti-metastatic activities[J]. Nature Biomedical Engineering, 2017, 1 (9): 745- 757
doi: 10.1038/s41551-017-0130-9
13 SOWINSKA M, URBANCZYK-LIPKOWSKA Z Advances in the chemistry of dendrimers[J]. New Journal of Chemistry, 2014, 38 (6): 2168- 2203
doi: 10.1039/c3nj01239e
14 YAMAMOTO K Dendrimer complexes: fine control of metal assembly in macromolecules[J]. Journal of Polymer Science Part a-Polymer Chemistry, 2005, 43 (17): 3719- 3727
doi: 10.1002/(ISSN)1099-0518
15 DUFES C, UCHEGBU I F, SCHATZLEIN A G Dendrimers in gene delivery[J]. Advanced Drug Delivery Reviews, 2005, 57 (15): 2177- 2202
doi: 10.1016/j.addr.2005.09.017
16 YANG J P, ZHANG Q, CHANG H, et al Surface-engineered dendrimers in gene delivery[J]. Chemical Reviews, 2015, 115 (11): 5274- 5300
doi: 10.1021/cr500542t
17 ARIMA H, MOTOYAMA K, HIGASHI T Sugar-appended polyamidoamine dendrimer conjugates with cyclodextrins as cell-specific non-viral vectors[J]. Advanced Drug Delivery Reviews, 2013, 65 (9): 1204- 1214
doi: 10.1016/j.addr.2013.04.001
18 BARNER-KOWOLLIK C, DU PREZ F E, ESPEEL P, et al "Clicking" polymers or just efficient linking: what is the difference?[J]. Angewandte Chemie-International Edition, 2011, 50 (1): 60- 62
doi: 10.1002/anie.v50.1
19 KOLB H C, FINN M G, SHARPLESS K B Click chemistry: diverse chemical function from a few good reactions[J]. Angewandte Chemie-International Edition, 2001, 40 (11): 2004- 2021
doi: 10.1002/(ISSN)1521-3773
20 FELLA C, WALKER G F, OGRIS M, et al Amine-reactive pyridylhydrazone-based PEG reagents for pH-reversible PEI polyplex shielding[J]. European Journal of Pharmaceutical Sciences, 2008, 34 (4-5): 309- 320
doi: 10.1016/j.ejps.2008.05.004
21 ASAYAMA S, SUDO M, NAGAOKA S, et al Carboxymethyl poly(L-histidine) as a new pH-sensitive polypeptide to enhance polyplex gene delivery[J]. Molecular Pharmaceutics, 2008, 5 (5): 898- 901
doi: 10.1021/mp800094b
22 PACK D W, HOFFMAN A S, PUN S, et al Design and development of polymers for gene delivery[J]. Nature Reviews Drug Discovery, 2005, 4 (7): 581- 593
doi: 10.1038/nrd1775
23 ZHU D C, YAN H J, LIU X, et al Intracellularly disintegratable polysulfoniums for efficient gene delivery[J]. Advanced Functional Materials, 2017, 27 (16): 1606826
doi: 10.1002/adfm.201606826
24 QIU N S, LIU X R, ZHONG Y, et al Esterase-activated charge-reversal polymer for fibroblast-exempt cancer gene therapy[J]. Advanced Materials, 2016, 28 (48): 10613- 10622
doi: 10.1002/adma.201603095
No related articles found!