| 
					
						| 
								
									| 计算机技术与控制工程 |  |     |  |  
    					|  |  
    					| 基于低维约束嵌入的分布参数系统建模 |  
						| 周朝君(  ),黄明辉,陆新江*(  ) |  
					| 中南大学 机电工程学院,湖南 长沙 410083 |  
						|  |  
    					| Modeling for distributed parameter systems based on low-dimensional constrained embedding |  
						| Chao-jun ZHOU(  ),Ming-hui HUANG,Xin-jiang LU*(  ) |  
						| College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China |  
					
						| 
								
									|  
          
          
            
             
			              
            
									            
									                
																																															
																| 1 | DONG J, WANG Q, WANG M, et al Data-driven quality monitoring techniques for distributed parameter systems with application to hot-rolled strip laminar cooling process[J]. IEEE Access, 2018, 6: 16646- 16654 doi: 10.1109/ACCESS.2018.2812919
 |  
																| 2 | AGUILAR-LEAL O, FUENTES-AGUILAR R Q, CHAIREZ I, et al Distributed parameter system identification using finite element differential neural networks[J]. Applied Soft Computing, 2016, 43: 633- 642 doi: 10.1016/j.asoc.2016.01.004
 |  
																| 3 | PANCHAL S, DINCER I, AGELIN-CHAAB M, et al Thermal modeling and validation of temperature distributions in aprismatic lithium-ion battery at different discharge rates and varying boundary conditions[J]. Applied Thermal Engineering, 2016, 96: 190- 199 doi: 10.1016/j.applthermaleng.2015.11.019
 |  
																| 4 | WANG J W, WU H N Exponential pointwise stabilization of semi-linear parabolic distributed parameter systems via the Takagi-Sugeno fuzzy PDE model[J]. IEEE Transactions on Fuzzy Systems, 2016, 26 (1): 155- 173 |  
																| 5 | ALESSANDRI A, GAGGERO M, ZOPPOLI R Feedback optimal control of distributed parameter systems by using finite-dimensional approximation schemes[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23 (6): 984- 996 doi: 10.1109/TNNLS.2012.2192748
 |  
																| 6 | DENG H, LI H X, CHEN G R Spectral-approximation-based intelligent modeling for distributed thermal processes[J]. IEEE Transactions on Control Systems Technology, 2005, 13 (5): 686- 700 doi: 10.1109/TCST.2005.847329
 |  
																| 7 | BARONI S, GIANNOZZI P, TESTA A Green's-function approach to linear response in solids[J]. Physical Review Letters, 1987, 58 (18): 1861- 1864 doi: 10.1103/PhysRevLett.58.1861
 |  
																| 8 | MITCHELL A R, GRIFFITHS D F. The finite difference method in partial differential equations [M]. London: Wiley, 1980. |  
																| 9 | LUO B, HUANG T W, WU H N, et al Data-driven H∞ infinity control for nonlinear distributed parameter systems [J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26 (11): 2949- 2961 doi: 10.1109/TNNLS.2015.2461023
 |  
																| 10 | JIANG M, DENG H Improved empirical eigenfunctions based model reduction for nonlinear distributed parameter systems[J]. Industrial and Engineering Chemistry Research, 2013, 52 (2): 934- 940 doi: 10.1021/ie301179e
 |  
																| 11 | PARK H M, CHO D H The use of the Karhunen-Loève decomposition for the modeling of distributed parameter systems[J]. Chemical Engineering Science, 1996, 51 (1): 81- 98 doi: 10.1016/0009-2509(95)00230-8
 |  
																| 12 | GAY D H, RAY W H Identification and control of distributed parameter systems by means of the singular value decomposition[J]. Chemical Engineering Science, 1995, 50 (10): 1519- 1539 doi: 10.1016/0009-2509(95)00017-Y
 |  
																| 13 | ZHAO Z J, WANG X G, ZHANG C L, et al Neural network based boundary control of a vibrating string system with input deadzone[J]. Neurocomputing, 2018, 275: 1021- 1027 doi: 10.1016/j.neucom.2017.09.050
 |  
																| 14 | 董辉, 傅鹤林, 冷伍明 支持向量机的时间序列回归与预测[J]. 系统仿真学报, 2006, 18 (7): 1785- 1788 DONG Hui, FU He-lin, LENG Wu-ming Time series regression and prediction of support vector machine[J]. Journal of System Simulation, 2006, 18 (7): 1785- 1788
 doi: 10.3969/j.issn.1004-731X.2006.07.014
 |  
																| 15 | WANG J W, WU H N, YU Y, et al Mixed H2/H∞ fuzzy proportional-spatial integral control design for a class of nonlinear distributed parameter systems [J]. Fuzzy Sets and Systems, 2017, 306: 26- 47 doi: 10.1016/j.fss.2016.01.004
 |  
																| 16 | QI C K, LI H X A Karhunen-Loève decomposition based Wiener modeling approach for nonlinear distributed parameter processes[J]. Industrial and Engineering Chemistry Research, 2008, 47 (12): 4184- 4192 doi: 10.1021/ie0710869
 |  
																| 17 | ZHANG R D, TAO J L, LU R Q, et al Decoupled ARX and RBF neural network modeling using PCA and GA optimization for nonlinear distributed parameter systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29 (2): 457- 469 doi: 10.1109/TNNLS.2016.2631481
 |  
																| 18 | QI C K, LI H X Nonlinear dimension reduction based neural modeling for distributed parameter processes[J]. Chemical Engineering Science, 2009, 64 (19): 4164- 4170 doi: 10.1016/j.ces.2009.06.053
 |  
																| 19 | LU X J, ZOU W, HUANG M H Robust spatiotemporal LS-SVM modeling for nonlinear distributed parameter system with disturbance[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (10): 8003- 8012 |  
																| 20 | LU X J, ZOU W, HUANG M H A novel spatiotemporal LS-SVM method for complex distributed parameter systems with applications to curing thermal process[J]. IEEE Transactions on Industrial Informatics, 2016, 12 (3): 1156- 1165 |  
																| 21 | LU X J, YIN F, HUANG M H Online spatiotemporal LS-SVM modeling approach for time-vary distributed parameter processes[J]. Industrial and Engineering Chemistry Research, 2017, 56 (25): 7314- 7321 doi: 10.1021/acs.iecr.7b00984
 |  
																| 22 | ROWEIS S, SAUL L Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290 (5500): 2323- 2326 |  
																| 23 | MIAO A M , GE Z Q, SONG Z H, et al Nonlocal structure constrained neighborhood preserving embedding model and its application for fault detection[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 142: 184- 196 |  
             
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |