自动化技术 |
|
|
|
|
基于节点拓扑特性的网站无障碍抽样方法 |
高斐1, 陈荣华2, 卜佳俊3, 于智3, 王鹰汉4, 田甜5 |
1. 莆田学院 信息工程学院, 福建 莆田 310011;
2. 江西财经职业学院, 江西 九江 332000;
3. 浙江大学 浙江省服务机器人重点实验室, 浙江 杭州 310027;
4. 上饶职业技术学院, 江西 上饶 334109;
5. 审计署驻上海特派员办事处, 上海 200051 |
|
Web accessibility sampling method based on node topology characteristics |
GAO Fei1, CHEN Rong-hua2, BU Jia-jun3, YU Zhi3, WANG Ying-han4, TIAN Tian5 |
1. College of Information Engineering, Putian University, Putian 310011, China;
2. Jiangxi Vocational College of Finance and Economics, Jiujiang 332000, China;
3. Zhejiang Provincial Key Laboratory of Service Robot, Zhejiang University, Hangzhou 310027, China;
4. Shangrao Vocational and Technical College, Shangrao 334109, China;
5. Shanghai Agency of National Audit Office, Shanghai 200051, China |
引用本文:
高斐, 陈荣华, 卜佳俊, 于智, 王鹰汉, 田甜. 基于节点拓扑特性的网站无障碍抽样方法[J]. 浙江大学学报(工学版), 2017, 51(10): 1891-1900.
GAO Fei, CHEN Rong-hua, BU Jia-jun, YU Zhi, WANG Ying-han, TIAN Tian. Web accessibility sampling method based on node topology characteristics. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(10): 1891-1900.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.10.002
或
http://www.zjujournals.com/eng/CN/Y2017/V51/I10/1891
|
[1] 刘智慧,张泉灵.大数据技术研究综述[J].浙江大学学报:工学版,2014,48(6):957-972. LIU Zhi-hui, ZHANG Quan-ling. Reseach overview of big data technology[J]. Journal of Zhejiang University:Engineering Science, 2014, 48(6):957-972.
[2] 中国残疾人联合会关于使用2010年末全国残疾人总数及各类、不同残疾等级人数的通知[R/OL].[2012-06-26]. http://www.cdpf.org.cn/ggtz/201203/t20120312_410693.shtml.
[3] WHO,世界银行世界残疾问题报告[R/OL].[2011-06-09]. http://www.docin.com/p-297463652.html.
[4] 刘学慧,王东博,曲波,等.随机抽样方法在医学教学中的应用及计算机实现[J].中国医科大学学报,2013,42(5):460-462. LU Xue-hui, WANG Dong-bo, QU Bo, et al. Application of random sampling method in medical teaching and comuter implementation[J]. Journal of China Medical University, 2013, 42(5):460-462.
[5] WEST P W. Sample random sampling of individualitems in the absence of a sampling frame that lists the individuals[J]. New Zealand Journal of ForestryScience, 2016, 46(15):1-7.
[6] HUANG Z. Extensions to the Kmeans algorithm for clustering large data sets with categorical values[J]. Data Mining and Knowledge Discovery, 1998, 2(3):283-304.
[7] PAGE L, BRIN S, MOTWANI R, et al. Technical report, Stanford Digital Library Technologies Project. The PageRank citation ranking:bringing order to the web[R/OL].[2001-10-13]. http://dbpubs.stanford.edu/pub/1999-66.
[8] TAHER H H. Topic-sensitive PageRank[C]//Proceedings of the 11th International Conference on World Wide Web. Honolulu:IEEE, 2002:517-526.
[9] TAHER H H. Technical report, Stanford University. Efficient computation of PageRank[R/OL].[2000-02-25]. http://dbpubs.stanford.edu:8090/pub/1999-31.
[10] 肖俐平,孟晖,李德毅.基于拓扑势的网络节点重要性排序及评价方法[J].武汉大学学报:信息科学版,2008,33(4):380-383. XIAO Li-ping, MENG Hui, LI De-yi. Approach to node ranking in a network based on topology potential[J]. Geomatics and Information Science of Wuhan Uni-versity, 2008, 33(4):380-383.
[11] XU H, ZHANG J P, YANG J. Measurement of nodes importance for structural-holes-oriented[C]//Proceedings of Pioneering Computer Scientists, Engineers and Educators(ICYCSEE). Harbin:Springer, 2016:458-469.
[12] ULRIKE V L. A tutorial on spectral clustering[J]. Statistics and Computing. 2007, 17(4):395-416.
[13] ZHANG S C, ZONG M, SUN K, et al. Efficient KNN algorithm based on graph sparse reconstruction[C]//Proceedings of Advanced Data Mining and Applications(ADMA). Guilin:[s. n.], 2014:356-369.
[14] MASAJIRO I. Pruned bi-directed K-nearest neighbor graph for proximity search[C]//Proceedings of Similarity Search and Applications (SISAP). Tokyo:Springer, 2016:20-33.
[15] UGUR D, FAMOUSH B, CYRUS S, et al. Towards K-nearest neighbor search in time dependent spatial network databases[C]//Proceedings of Databases in Networked Information Systems(DNIS). Aizu-Wakamatsu:Springer, 2010:296-310.
[16] MAX K, JORGEN Z. A. Similarity measure in Bayesian classification based on characteristic attributes of objects[C]//Proceedings of Information Fusion. Heidelberg:IEEE, 2016, 5:1-8.
[17] ALFIRNA R L, ADHISTYA E P, NOOR A S. Cosine similarity to determine similarity measure:Study case in online essay assessment[C]//Proceedings of International Conference on Cyber and it Service management. Djakarta:IEEE, 2016.
[18] GOBEL F, JAGERS A A. Random walks on graphs[J]. Stochastic Processes and Their Applications, 1974, 2(4):311-336.
[19] SEAN G, TINA E R, LAN D. Guided learning for role discovery (GLRD):framework, algorithms, and applications[C]//Proceedings of Knowledge Discovery and Data Mining. Chicago:ACM, 2013:113-121.
[20] WATTS D J, STROGATZ S H. Collective dynamics of "small-world" networks[J]. Nature. 1998, 393:440-442.
[21] MURIEL G, RICARDO A, JOSE C Q, et al. Encyclopedia of astrobiology[M]. Berlin:Springer, 2011,3(3):28-29.
[22] FREEMAN L C. A set of measures of centrality based upon betweenness[J]. Sociometry, 1977, 40(1):35-41.
[23] 于会,刘尊,李勇.基于多属性决策的复杂网络节点重要性综合评价方法[J].物理学报,2013, 62(2):41-49. YU Hui, LIU Zun, LI Yong. Key nodes in complex networks identified by multi-attribute decision-making method[J]. Acta Physica Sinica, 2013, 62(2):41-49.
[24] HENZINGER M R, HEYDON A, MITZENMACHER M, et al.On near-uniform URL sampling[J].Computer Networks, 2000, 33(1):295-308.
[25] ZHANG M N, WANG C, BU J J, et al. A sampling method based on URL clustering for fast Web accessibility evaluation[J]. Frontiers of Information Technology and Electronic Engineering, 2015, 16(6):449-456.
[26] 周宇.基于抽样和模板的网站无障碍检测方法[D].杭州:浙江大学, 2014. ZHOU Yu. Web accessibility evaluation approaches based on sampling and template detection[D]. Hangzhou:Zhejiang University, 2014. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|