Please wait a minute...
J4  2014, Vol. 48 Issue (2): 200-205    DOI: 10.3785/j.issn.1008-973X.2014.02.003
机械工程     
改进的柱塞泵流量脉动“实用近似”测试法
宋月超, 徐兵, 杨华勇, 张军辉
浙江大学 流体动力及机电系统国家重点实验室,浙江 杭州 310027
Modified practical approximate method for testing source flow of  piston pump
SONG Yue-chao, XU Bing, YANG Hua-yong, ZHANG Jun-hui
State Key Laboratory of Fluid Power and Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1349 KB)   HTML
摘要:

针对现有“实用近似”法测试带有复杂出口管道液压泵的流量脉动精度低的问题,提出一种改进的柱塞泵流量脉动“实用近似”测试法.基于柱塞泵、参考管道和加载阀三维流场,建立“实用近似”法测试系统的有限元模型,该模型对参考管道压力信号仿真精度大于90%;采用该有限元模型和动边界理论获得柱塞泵复杂出口管道特征参数,提高“实用近似”法对泵源阻抗估算精度.对比改进的“实用近似”法和ISO“二次源”法测试的泵源流量脉动,结果表明,脉动幅值和最小流量值基本相同,因此,改进的“实用近似”法适于测试带有复杂出口管道的柱塞泵流量脉动.

Abstract:

A modified practical approximate method for the flow ripple measurement was proposed, in order to solve the problem that the test accuracy of the source flow of pump with complicated discharge pipe was low with the current method. A finite element model of test system utilizing practical approximate method was built based on the three-dimensional flow field of the axial piston pump, reference pipe and loading valve. The simulation accuracy of the pipe pressure is more than 90%. Based on the validated finite element model and dynamic boundary condition, the characteristic parameters of the complicated pump discharge pipe were obtained. The pump source impedance calculated by the proposed method was improved. Compared with the ISO secondary source method, the amplitude and minimum of the measured flow ripple of the proposed method was satisfying. Therefore, the modified practical approximate method can be used to test the source flow ripple of the hydraulic pump with complicated discharge pipe.

出版日期: 2014-02-01
:  TH 137  
基金资助:

国家“973”重点基础研究发展规划资助项目(2014CB046403);国家“十一五”科技支撑计划资助项目(2011BAF09B03).

通讯作者: 徐兵,男,教授,博导.     E-mail: bxu@zju.edu.cn
作者简介: 宋月超(1981—),男,博士生,主要从事流体传动及控制方面的研究.E-mail: syc19810807@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

宋月超, 徐兵, 杨华勇, 张军辉. 改进的柱塞泵流量脉动“实用近似”测试法[J]. J4, 2014, 48(2): 200-205.

SONG Yue-chao, XU Bing, YANG Hua-yong, ZHANG Jun-hui. Modified practical approximate method for testing source flow of  piston pump. J4, 2014, 48(2): 200-205.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.02.003        http://www.zjujournals.com/eng/CN/Y2014/V48/I2/200

[1] 马吉恩. 轴向柱塞泵流量脉动及配流盘优化设计研究[D]. 杭州:浙江大学, 2009: 12-36.
MA Ji-en. Study on flow ripple and valve plate optimization of axial piston pump[D]. Hangzhou: Zhejiang University, 2009: 12-36.
[2] BOWNS D E, EDGE K A, McCANDLISH D. Factors affecting the choice of a standard method for the determination of pump pressure ripple[C]∥MechE Conference Quiet Oil Hydraulic Systems. London UK: [s. n.]. 1980: 141-148.
[3] EDGE K A, WING T J. The measurement of the fluid borne pressure ripple characteristics of hydraulic components [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1983, 197(4): 247-254.
[4] EDGE K A, JOHNSTON D N. The secondary source method for the measurement of pump pressure ripple characteristics 1. Description of method [J]. Proceedings of the Institution of Mechanical Engineers Part A-journal of Power and Energy, 1990, 204 (1): 33-40.
[5] EDGE K A, JOHNSTON D N. The secondary source method for the measurement of pump pressure ripple characteristics 2. Experimental results [J]. Proceedings of the Institution of Mechanical Engineers Part A-journal of Power and Energy, 1990, 204 (1): 41-46.
[6] KOJIMA E, NAGAKURA H. Characteristics of fluid borne noise generated by fluid power pumps: 1st report, mechanism of generation of pressure pulsation in axial piston pump[J]. Bulletin of JSME, 1982, 199(25): 46-53.
[7] KOJIMA E. Experimental determining and theoretical predicting of source flow ripple generated by fluid power piston pumps[C]∥SAE International Off-Highway and Power plant Congress and Exposition. Milwaukee: SAE Special Publ. Topics in Hydraulics SP-1554, 2000: 73-82.
[8] PETTERSSON M, WEDDFELT K, PALMBERG J O. Methods of reducing flow ripple from fluid power piston pumps: a theoretical approach[J]. SAE Transactions, 1991, 100(2): 158-167.
[9] WEDDFELT K. Measurement of pump source characteristics by the two-microphone method [C]∥The Second Tampere International Conference on Fluid Power. Tampere Finland: [s. n.], 1991: 1-12.
[10] ERICSON L. Measurement system for hydrostatic pump flow pulsations[D]. Sweden: Linkpings Universitet, 2005: 56-82.
[11] JOHANSSON A. Design principles for noise reduction in hydraulic piston pumps-simulation, optimization and experimental verification[D]. Sweden: Linkpings Universitet, 2005: 31-52.
[12] 余经洪. 柱塞泵动态模型与降噪[D]. 上海:上海交通大学,1990: 41-92.
YU Jing-hong. Dynamic model and noise reduction of piston pump[D]. Shanghai: Shanghai Jiaotong University, 1990: 41-92.
[13] 盛敬超. 液压流体力学[M]. 北京:机械工业出版社, 1979: 102-135.
[14] ISO 10767-1-1996 Hydraulic fluid power-determination of pressure ripple levels generated in system and components part 1: precision method for pumps[S]. London: British Standards Institution, 1996.
[15] 徐兵,宋月超,杨华勇.复杂出口管道柱塞泵流量脉动测试原理研究[J].机械工程学报,2012.48(22): 162-167.
XU Bing, SONG Yue-chao, YANG Hua-yong. Investigation of Test principle of flow ripple generated by piston pump with complicated pipe [J]. Chinese Journal of Mechanical Engineering, 2012.48(22): 162-167.

[1] 丁川,丁凡,周星,满在朋,杨灿军. 新型耐压湿式比例电磁铁的研制与对比试验研究[J]. J4, 2014, 48(3): 451-455.
[2] 满在朋,丁凡,丁川,刘硕,黄挺峰. 液压软管脉冲试验的发展与研究综述[J]. J4, 2014, 48(1): 21-28.
[3] 施虎, 杨华勇, 龚国芳, 侯典清. 盾构推进液压系统载荷顺应性指标和评价方法[J]. J4, 2013, 47(8): 1444-1449.
[4] 侯典清,龚国芳,施虎,王林涛. 基于顺应特性的新型盾构推进系统设计[J]. J4, 2013, 47(7): 1287-1292.
[5] 施虎,杨华勇,龚国芳,王林涛. 盾构掘进机关键技术及模拟试验台现状与展望[J]. J4, 2013, 47(5): 741-749.
[6] 魏建华,国凯,熊义. 大型装备多轴电液执行器同步控制[J]. J4, 2013, 47(5): 755-760.
[7] 侯典清, 龚国芳, 施虎, 王林涛. 盾构推进系统突变载荷顺应特性研究[J]. J4, 2013, 47(3): 522-527.
[8] 朱旭, 魏建华, 方锦辉. 先导式电液配流系统的动态特性[J]. J4, 2013, 47(2): 193-200.
[9] 张彦廷, 渠迎锋, 刘振东, 马江涛. 天车升沉补偿系统摇摆装置的设计[J]. J4, 2012, 46(12): 2268-2273.
[10] 杜恒, 魏建华, 冯瑞琳. 压力跟踪阀建模、仿真与试验研究[J]. J4, 2012, 46(6): 1034-1040.
[11] 方锦辉, 魏建华, 孔晓武. 并联伺服阀的同步控制策略[J]. J4, 2012, 46(6): 1054-1059.
[12] 满军, 丁凡, 李其朋, 笪靖, 邵森寅. 永磁屏蔽式耐高压高速开关电磁铁[J]. J4, 2012, 46(2): 309-314.
[13] 管成,徐晓,林潇,王守洪. 液压挖掘机回转制动能量回收系统[J]. J4, 2012, 46(1): 142-149.
[14] 黄家海,邱敏秀,方文敏. 液黏调速离合器中摩擦副间隙内流体传热分析[J]. J4, 2011, 45(11): 1934-1940.
[15] 黄家海,魏建华,邱敏秀. 液黏调速离合器传动特性分析[J]. J4, 2011, 45(11): 1927-1933.