Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (2): 240-247    DOI: 10.3785/j.issn.1008-973X.2026.02.002
能源工程、机械工程     
台风影响下东南沿海山地风电场尾流与功率特征研究
董彦斌1(),李德顺1,2,3,*(),李仁年1,2,3
1. 兰州理工大学 能源与动力工程学院,甘肃 兰州 730050
2. 甘肃省风力机工程技术研究中心,甘肃 兰州 730050
3. 甘肃省流体机械及系统重点实验室,甘肃 兰州 730050
Wake and power characteristics of wind farms in typhoon-affected southeastern coastal mountains
Yanbin DONG1(),Deshun LI1,2,3,*(),Rennian LI1,2,3
1. College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2. Gansu Provincial Technology Centre for Wind Turbines, Lanzhou 730050, China
3. Key Laboratory of Fluid Machinery and Systems of Gansu Province, Lanzhou 730050, China
 全文: PDF(8783 KB)   HTML
摘要:

以2018年第8号台风“玛莉亚”为背景,基于中尺度天气预报模式(WRF)耦合风电场参数化模型,研究东南沿海复杂山地地形风电场在台风影响下的尾流与功率特征. 结果表明,在台风外围环流影响阶段(低风速条件下),地形效应对风电场来流产生显著调制作用. 当来流风向偏北时,1到4号机组受地形遮蔽效应影响,功率输出较21到24号机组降低约35%,风电场尾迹区的大气运动主要表现为水平输送特征. 受复杂山地地形制约的风电场不规则布局,导致机组功率输出对来流风向变化极为敏感,相邻机组在风向微小变化下呈现显著的功率输出差异. 在台风影响期间,整场来流风速增大,风电场满发,机组间尾流干涉对功率输出的影响较小.

关键词: 台风风电场尾流功率输出中尺度模式    
Abstract:

Against the backdrop of Typhoon Maria (2018), the mesoscale weather research and forecasting model (WRF) coupled with a wind-farm parameterization scheme was used to investigate the wake and power characteristics of wind farms in the complex mountainous terrain of the southeastern coast under typhoon influence. Results showed that during the phase influenced by the typhoon’s peripheral circulation (under low wind speed conditions), the topographic effects significantly modulated the incoming flow to the wind farm. When the incoming flow was northerly, the topographic shielding reduced the power output of units 1 to 4 by approximately 35% compared with units 21 to 24. The atmospheric motion in the wake area of the wind farm was primarily characterized by horizontal transport. The irregular layout of the wind farm, constrained by the complex mountainous terrain, resulted in a high sensitivity of unit power output to changes in incoming flow direction, with significant power output differences observed among adjacent units even with minor directional changes. During the typhoon impact period, the overall incoming wind speed increased, leading to full power generation at the wind farm, and the influence of wake interference among units on power output was minimal.

Key words: typhoon    wind farm    wake    power output    mesoscale model
收稿日期: 2025-01-04 出版日期: 2026-02-03
CLC:  TK 89  
基金资助: 国家自然科学基金资助项目(52166014);中国工程院战略研究与咨询项目(2023-DFZD-04-03).
通讯作者: 李德顺     E-mail: dongyanbin_lut@outlook.com;lideshun_8510@sina.com
作者简介: 董彦斌(1994—),男,博士生,从事风能气象数值模拟研究. orcid.org/0000-0001-7058-7896. E-mail:dongyanbin_lut@outlook.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
董彦斌
李德顺
李仁年

引用本文:

董彦斌,李德顺,李仁年. 台风影响下东南沿海山地风电场尾流与功率特征研究[J]. 浙江大学学报(工学版), 2026, 60(2): 240-247.

Yanbin DONG,Deshun LI,Rennian LI. Wake and power characteristics of wind farms in typhoon-affected southeastern coastal mountains. Journal of ZheJiang University (Engineering Science), 2026, 60(2): 240-247.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.02.002        https://www.zjujournals.com/eng/CN/Y2026/V60/I2/240

图 1  风力机功率与推力系数随水平风速的变化
图 2  中尺度天气预报模式的数值计算域
图 3  风电场布局及风力机海拔
图 4  台风“玛莉亚”(2018)的移动轨迹图
图 5  观测站的风速-压力时程图
图 6  海峡风速云图(z=80 m)
图 7  受台风影响前不同时刻有无风电场的风速差场
图 8  受台风影响前不同时刻风电场功率输出
图 9  受台风影响期间不同时刻有无风电场的风速差场
图 10  受台风影响后不同时刻风电场功率输出
1 杨国兵, 韩立峰 海上风电项目风险因素分析及应对[J]. 企业管理, 2020, (Suppl.2): 220- 221
YANG Guobing, HAN Lifeng Offshore wind project risk factor analysis and response[J]. Enterprise Management, 2020, (Suppl.2): 220- 221
2 胡伟. 西北太平洋台风路径及防抗措施 [C]// 第八届中国国际救捞论坛论文集. 上海: 上海浦江教育出版社, 2014: 106–107.
HU Wei. Track of the northwest pacific typhoon and measures to prevent and combat it [C]// Proceedings of The 8th China International Rescue and Salvage Conference. Shanghai: Shanghai Pujiang Education Press, 2014: 106–107.
3 高琳. 风电场遇热带气旋利好还是利空? [N]. 中国气象报, 2012−05−16(3).
4 张容焱, 张秀芝, 蔡连娃, 等 热带气旋对中国沿海风电开发的影响[J]. 气象, 2009, 35 (12): 88- 95
ZHANG Rongyan, ZHANG Xiuzhi, CAI Lianwa, et al The impact of tropical cyclones on coastal wind farm development in China[J]. Meteorological Monthly, 2009, 35 (12): 88- 95
5 MATTU K L, BLOOMFIELD H C, THOMAS S, et al The impact of tropical cyclones on potential offshore wind farms[J]. Energy for Sustainable Development, 2022, 68: 29- 39
doi: 10.1016/j.esd.2022.02.005
6 DENG S, TUO P, CHEN D, et al Impact of offshore wind farms on a tropical depression through the amplification effect by the downstream mountainous terrain[J]. Atmospheric Research, 2023, 296: 107047
doi: 10.1016/j.atmosres.2023.107047
7 HONG L, MÖLLER B An economic assessment of tropical cyclone risk on offshore wind farms[J]. Renewable Energy, 2012, 44: 180- 192
doi: 10.1016/j.renene.2012.01.010
8 CARVALHO D, ROCHA A, GÓMEZ-GESTEIRA M, et al Offshore wind energy resource simulation forced by different reanalyses: comparison with observed data in the Iberian Peninsula[J]. Applied Energy, 2014, 134: 57- 64
doi: 10.1016/j.apenergy.2014.08.018
9 NA J S, KOO E, MUÑOZ-ESPARZA D, et al Turbulent kinetics of a large wind farm and their impact in the neutral boundary layer[J]. Energy, 2016, 95: 79- 90
doi: 10.1016/j.energy.2015.11.040
10 HONG S Y, NOH Y, DUDHIA J A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134 (9): 2318- 2341
doi: 10.1175/MWR3199.1
11 MLAWER E J, TAUBMAN S J, BROWN P D, et al Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave[J]. Journal of Geophysical Research: Atmospheres, 1997, 102 (D14): 16663- 16682
doi: 10.1029/97JD00237
12 王凯, 李渊, 高丽, 等 浙东地形对台风性质的影响: 以1909号台风“利奇马”为例[J]. 海洋预报, 2022, 39 (1): 11- 20
WANG Kai, LI Yuan, GAO Li, et al The influences of topography of eastern Zhejiang on typhoon properties: a case study of Typhoon “Lekima” (1909)[J]. Marine Forecasts, 2022, 39 (1): 11- 20
13 HUANG C Y, JUAN T C, KUO H C, et al Track deflection of Typhoon Maria (2018) during a westbound passage offshore of northern Taiwan: topographic influence[J]. Monthly Weather Review, 2020, 148 (11): 4519- 4544
doi: 10.1175/MWR-D-20-0117.1
14 郜志腾, 张军, 李岳, 等 极端天气对风电场局地风环境的影响[J]. 华中科技大学学报: 自然科学版, 2024, 52 (7): 106- 112
GAO Zhiteng, ZHANG Jun, LI Yue, et al Impact of extreme weather on local wind environment of wind farm[J]. Journal of Huazhong University of Science and Technology: Nature Science Edition, 2024, 52 (7): 106- 112
15 LIU J, ZHANG H, ZHONG R, et al Impacts of wave feedbacks and planetary boundary layer parameterization schemes on air-sea coupled simulations: a case study for Typhoon Maria in 2018[J]. Atmospheric Research, 2022, 278: 106344
doi: 10.1016/j.atmosres.2022.106344
16 FOUQUART Y, BONNEL B, RAMASWAMY V Intercomparing shortwave radiation codes for climate studies[J]. Journal of Geophysical Research: Atmospheres, 1991, 96 (D5): 8955- 8968
doi: 10.1029/90JD00290
17 XIA G, CERVARICH M C, ROY S B, et al Simulating impacts of real-world wind farms on land surface temperature using the WRF model: validation with observations[J]. Monthly Weather Review, 2017, 145 (12): 4813- 4836
doi: 10.1175/MWR-D-16-0401.1
18 FITCH A C Notes on using the mesoscale wind farm parameterization of Fitch et al. (2012) in WRF[J]. Wind Energy, 2015, 19 (9): 1757- 1758
19 GRELL G A, DÉVÉNYI D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques [J]. Geophysical Research Letters, 2002, 29(14): 38.
20 王强, 罗坤, 吴春雷, 等 耦合风电场参数化模型的天气预报模式对风资源的评估和验证[J]. 浙江大学学报: 工学版, 2019, 53 (8): 1572- 1581
WANG Qiang, LUO Kun, WU Chunlei, et al Wind resource assessment of weather research and forecasting model coupled with wind farm parameterization model[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (8): 1572- 1581
[1] 周品涵,沈炼,韩艳,许家陆,米立华,蔡春声. 基于幂函数风亏分布的三维偏航尾流模型[J]. 浙江大学学报(工学版), 2025, 59(1): 187-195.
[2] 王强,罗坤,吴春雷,樊建人. 耦合风电场参数化模型的天气预报模式对风资源的评估和验证[J]. 浙江大学学报(工学版), 2019, 53(8): 1572-1581.
[3] 唐伟佳, 江道灼, 尹瑞, 梁一桥, 王玉芬. 模块化隔离型直流变换器的同轴变压器设计[J]. 浙江大学学报(工学版), 2017, 51(8): 1646-1652.
[4] 谢恩献, 袁行飞, 陈冲. 台风作用下弦支网壳结构动力失效[J]. 浙江大学学报(工学版), 2017, 51(2): 238-244.
[5] 孙志林, 卢美, 聂会, 黄森军. 浙江沿海登陆台风风暴潮特性分析[J]. J4, 2014, 48(2): 262-267.
[6] 张亚超, 姚炎明, 万猛, 袁金雄. 基于不同初始流速和推力系数的水平轴海流机尾流效应的实验研究[J]. 浙江大学学报(工学版), 2014, 48(12): 2271-2276.
[7] 贺治国, 吴钢锋, 王振宇, 刘国华, 鲍鑫, 冯威. 台风暴雨影响区域的溃坝洪水演进数值计算[J]. J4, 2010, 44(8): 1589-1596.