| 计算机技术 |
|
|
|
|
| 面向无人驾驶的零样本记忆感知选择视觉跟踪模型 |
李杰1( ),汪诗敏1,王长城2,崔亚峰2,汪俊杰3,周惟嘉1,胡铮2,兰海2,杜玲2,高猛2 |
1. 北京建筑大学 机电与车辆工程学院,北京 100044 2. 中国北方车辆研究所,北京 100072 3. 重庆文理学院,重庆 402160 |
|
| Zero-shot memory-aware selection visual tracking model for unmanned driving |
Jie LI1( ),Shimin WANG1,Changcheng WANG2,Yafeng CUI2,Junjie WANG3,Weijia ZHOU1,Zheng HU2,Hai LAN2,Ling DU2,Meng GAO2 |
1. School of Mechanical-electronic and Automobile Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China 2. China North Vehicle Research Institute, Beijing 100072, China 3. Chongqing University of Arts and Sciences, Chongqing 402160, China |
引用本文:
李杰,汪诗敏,王长城,崔亚峰,汪俊杰,周惟嘉,胡铮,兰海,杜玲,高猛. 面向无人驾驶的零样本记忆感知选择视觉跟踪模型[J]. 浙江大学学报(工学版), 2026, 60(1): 61-70.
Jie LI,Shimin WANG,Changcheng WANG,Yafeng CUI,Junjie WANG,Weijia ZHOU,Zheng HU,Hai LAN,Ling DU,Meng GAO. Zero-shot memory-aware selection visual tracking model for unmanned driving. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 61-70.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.01.006
或
https://www.zjujournals.com/eng/CN/Y2026/V60/I1/61
|
| 1 |
于明鑫, 王长龙, 张玉华, 等 复杂环境下视觉目标跟踪研究现状及发展[J]. 航空兵器, 2024, 31 (3): 40- 50 YU Mingxin, WANG Changlong, ZHANG Yuhua, et al Survey of visual tracking algorithms in the complex scenarios[J]. Aero Weaponry, 2024, 31 (3): 40- 50
doi: 10.12132/ISSN.1673-5048.2023.0112
|
| 2 |
侯志强, 赵佳鑫, 陈语, 等 用于长时视觉跟踪的级联目标漂移判定网络[J]. 北京航空航天大学学报, 2025, 51 (7): 2240- 2252 HOU Zhiqiang, ZHAO Jiaxin, CHEN Yu, et al Cascaded object drift determination network for long-term visual tracking[J]. Journal of Beijing University of Aeronautics and Astronautics, 2025, 51 (7): 2240- 2252
|
| 3 |
马庆禄, 王伟, 孙枭, 等 隧道火灾的视觉跟踪算法[J]. 东南大学学报: 自然科学版, 2025, 55 (1): 255- 265 MA Qinglu, WANG Wei, SUN Xiao, et al Visual tracking algorithm for tunnel fire[J]. Journal of Southeast University: Natural Science Edition, 2025, 55 (1): 255- 265
|
| 4 |
魏超, 吴西涛, 朱耿霆, 等 基于视觉相机和激光雷达融合的无人车障碍物检测与跟踪研究[J]. 机械工程学报, 2025, 61 (2): 296- 309 WEI Chao, WU Xitao, ZHU Gengting, et al Research on obstacle detection and tracking of autonomous vehicles based on the fusion of vision camera and LiDAR[J]. Journal of Mechanical Engineering, 2025, 61 (2): 296- 309
|
| 5 |
DANELLJAN M, HÄGER G, KHAN F S, et al. Convolutional features for correlation filter based visual tracking [C]// Proceedings of the IEEE International Conference on Computer Vision Workshop. Santiago: IEEE, 2015: 621–629.
|
| 6 |
DANELLJAN M, HÄGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking [C]// Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 4310–4318.
|
| 7 |
BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking [C]// Proceedings of the European Conference on Computer Vision. Amsterdam: Springer, 2016: 850–865.
|
| 8 |
CHEN X, YAN B, ZHU J, et al. Transformer tracking [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 8122–8131.
|
| 9 |
XU T, ZHANG P, HUANG Q, et al. AttnGAN: fine-grained text to image generation with attentional generative adversarial networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1316–1324.
|
| 10 |
ZHU M, ZHANG H, ZHANG J, et al Multi-level prediction Siamese network for real-time UAV visual tracking[J]. Image and Vision Computing, 2020, 103: 104002
doi: 10.1016/j.imavis.2020.104002
|
| 11 |
YUAN Y, WANG D, WANG Q. Memory-augmented temporal dynamic learning for action recognition [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Honolulu: AAAI Press, 2019: 9167–9175.
|
| 12 |
WANG Q, ZHANG L, BERTINETTO L, et al. Fast online object tracking and segmentation: a unifying approach [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 1328–1338.
|
| 13 |
LI B, YAN J, WU W, et al. High performance visual tracking with Siamese region proposal network [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8971–8980.
|
| 14 |
YE B, CHANG H, MA B, et al. Joint feature learning and relation modeling for tracking: a one-stream framework [C]// Proceedings of the European Conference on Computer Vision. Tel Aviv: Springer, 2022: 341–357.
|
| 15 |
YU Y, XIONG Y, HUANG W, et al. Deformable Siamese attention networks for visual object tracking [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 6727–6736.
|
| 16 |
雷帮军, 丁奇帅, 牟乾西, 等. 基于模板更新和双特征增强的视觉跟踪算法[J/OL]. 北京航空航天大学学报, 2024: 1–15. (2024-02-27). https://link.cnki.net/doi/10.13700/j.bh.1001-5965.2024.0020. LEI Bangjun, DING Qishuai, MOU Qianxi, et al. Visual tracking algorithm based on template updating and dual feature enhancement [J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 2024: 1–15. (2024-02-27). https://link.cnki.net/doi/10.13700/j.bh.1001-5965.2024.0020.
|
| 17 |
黄煜杰, 陈凯, 王子源, 等 多目视觉下基于融合特征的密集行人跟踪方法[J]. 北京航空航天大学学报, 2025, 51 (7): 2513- 2525 HUANG Yujie, CHEN Kai, WANG Ziyuan, et al A dense pedestrian tracking method based on fusion features under multi-vision[J]. Journal of Beijing University of Aeronautics and Astronautics, 2025, 51 (7): 2513- 2525
|
| 18 |
侯志强, 王卓, 马素刚, 等 长时视觉跟踪中基于双模板Siamese结构的目标漂移判定网络[J]. 电子与信息学报, 2024, 46 (4): 1458- 1467 HOU Zhiqiang, WANG Zhuo, MA Sugang, et al Target drift discriminative network based on dual-template Siamese structure in long-term tracking[J]. Journal of Electronics & Information Technology, 2024, 46 (4): 1458- 1467
doi: 10.11999/JEIT230496
|
| 19 |
侯志强, 陈茂林, 马靖媛, 等 基于二阶注意力的Siamese网络视觉跟踪算法[J]. 北京航空航天大学学报, 2024, 50 (3): 739- 747 HOU Zhiqiang, CHEN Maolin, MA Jingyuan, et al Siamese network visual tracking algorithm based on second-order attention[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (3): 739- 747
|
| 20 |
罗彪, 欧阳志华, 易昕宁, 等 基于自适应动态规划的移动机器人视觉伺服跟踪控制[J]. 自动化学报, 2023, 49 (11): 2286- 2296 LUO Biao, OUYANG Zhihua, YI Xinning, et al Adaptive dynamic programming based visual servoing tracking control for mobile robots[J]. Acta Automatica Sinica, 2023, 49 (11): 2286- 2296
|
| 21 |
侯志强, 马靖媛, 韩若雪, 等 基于深度学习的快速长时视觉跟踪算法[J]. 北京航空航天大学学报, 2024, 50 (8): 2391- 2403 HOU Zhiqiang, MA Jingyuan, HAN Ruoxue, et al A fast long-term visual tracking algorithm based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (8): 2391- 2403
|
| 22 |
华夏, 王新晴, 芮挺, 等 视觉感知的无人机端到端目标跟踪控制技术[J]. 浙江大学学报: 工学版, 2022, 56 (7): 1464- 1472 HUA Xia, WANG Xinqing, RUI Ting, et al Vision-driven end-to-end maneuvering object tracking of UAV[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (7): 1464- 1472
|
| 23 |
甘耀东, 郑玲, 张志达, 等. 融合毫米波雷达与深度视觉的多目标检测与跟踪[J]. 汽车工程, 2021, 43(7): 1022–1029. GAN Yaodong, ZHENG Ling, ZHANG Zhida, et al. Multi-target detection and tracking with fusion of millimeter-wave radar and deep vision [J]. Automotive Engineering, 2021, 43(7): 1022–1029.
|
| 24 |
仇祝令, 查宇飞, 吴敏, 等 基于注意力学习的正则化相关滤波跟踪算法[J]. 电子学报, 2020, 48 (9): 1762- 1768 QIU Zhuling, ZHA Yufei, WU Min, et al Learning attentional regularized correlation filter for visual tracking[J]. Acta Electronica Sinica, 2020, 48 (9): 1762- 1768
doi: 10.3969/j.issn.0372-2112.2020.09.014
|
| 25 |
FAN H, LIN L, YANG F, et al. LaSOT: a high-quality benchmark for large-scale single object tracking [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5369–5378.
|
| 26 |
HUANG L, ZHAO X, HUANG K GOT-10k: a large high-diversity benchmark for generic object tracking in the wild[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (5): 1562- 1577
doi: 10.1109/TPAMI.2019.2957464
|
| 27 |
WU Y, LIM J, YANG M H. Online object tracking: a benchmark [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Portland: IEEE, 2013: 2411–2418.
|
| 28 |
CAI W, LIU Q, WANG Y. HIPTrack: visual tracking with historical prompts [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 19258–19267.
|
| 29 |
XIE J, ZHONG B, MO Z, et al. Autoregressive queries for adaptive tracking with spatio-temporal transformers [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 19300–19309.
|
| 30 |
ZHENG Y, ZHONG B, LIANG Q, et al ODTrack: online dense temporal token learning for visual tracking[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38 (7): 7588- 7596
doi: 10.1609/aaai.v38i7.28591
|
| 31 |
LIN L, FAN H, ZHANG Z, et al. Tracking meets LoRA: faster training, larger model, stronger performance [C]//Proceedings of the European Conference on Computer Vision. Milan: Springer, 2024: 300–318.
|
| 32 |
LI B, WU W, WANG Q, et al. SiamRPN: evolution of Siamese visual tracking with very deep networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4277–4286.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|