Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (8): 1624-1633    DOI: 10.3785/j.issn.1008-973X.2025.08.009
机械工程、能源工程     
基于用户负荷量化的供热系统二级网运行优化
周旭1,2(),杨子毓1,张俊伟1,吴燕玲3,*(),林小杰3,钟崴1,3,刘宝芹2
1. 浙江大学 工程师学院,浙江 杭州 310015
2. 济南热力集团有限公司,山东 济南 250000
3. 浙江大学 能源工程学院,浙江 杭州 310007
Optimization of secondary network operation of heating system based on user load quantification
Xu ZHOU1,2(),Ziyu YANG1,Junwei ZHANG1,Yanling WU3,*(),Xiaojie LIN3,Wei ZHONG1,3,Baoqin LIU2
1. Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
2. Jinan Heating Group Limited Company, Jinan 250000, China
3. College of Energy Engineering, Zhejiang University, Hangzhou 310007, China
 全文: PDF(1937 KB)   HTML
摘要:

针对用户热负荷评估不精确导致的供热系统供热不均衡问题, 建立基于机理的供热负荷量化模型,基于用户热负荷的精确量化,提出供热二级网的运行优化方法. 根据建筑特性和气候条件分析不同用户的实际用热需求,结合管网水力和热力建模分析,采用粒子群优化算法,对用户和二次侧阀门开度进行寻优,得到匹配用户负荷的最佳阀门开度调节策略. 案例分析结果显示,优化后热用户的回水温度整体方差较优化前降低了12.16%,二级网循环水泵电耗减少了16.46%. 在保证供热系统水力平衡的基础上,满足了用户的个性化供热需求,有效提升了热用户舒适度,减少了能源消耗.

关键词: 供热系统负荷量化机理建模运行优化二级网    
Abstract:

A mechanism-based quantitative model of heat supply load was established aiming at the problem of unbalanced heat supply in the heat supply system caused by inaccurate assessment of user heat load. An operation optimization method for the secondary heat supply network was proposed based on the accurate quantification of user heat load. The actual thermal demand of different users was analyzed according to the building characteristics and climatic conditions. The particle swarm optimization algorithm was used to optimize the valve opening of users and the secondary side combined with the hydraulic and thermal modeling analysis of the pipe network. Then the optimal valve opening adjustment strategy matching the user load was obtained. The result of the case analysis showed that the overall variance of backwater temperature of hot users after optimization was reduced by 12.16% compared with that before optimization, and the power consumption of the circulating pump in a secondary network was reduced by 16.46%. The personalized heating needs of users can be met based on ensuring the hydraulic balance of the heating system. Then the comfort of thermal users is effectively improved, and energy consumption is reduced.

Key words: heating system    load quantification    mechanism modeling    operational optimization    secondary network
收稿日期: 2024-08-10 出版日期: 2025-07-28
:  TP 393  
基金资助: 国家自然科学基金资助项目(51806190);浙江省“尖兵”“领雁”研发攻关计划资助项目(2024C03117); 国家重点研发计划资助项目(2023YFE0108600).
通讯作者: 吴燕玲     E-mail: zhouxu@jinanenergy.cn;shelleywu@zju.edu.cn
作者简介: 周旭(1983—),男,博士生,从事供热系统调度应用的研究. orcid.org/0009-0002-2151-2788. E-mail:zhouxu@jinanenergy.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
周旭
杨子毓
张俊伟
吴燕玲
林小杰
钟崴
刘宝芹

引用本文:

周旭,杨子毓,张俊伟,吴燕玲,林小杰,钟崴,刘宝芹. 基于用户负荷量化的供热系统二级网运行优化[J]. 浙江大学学报(工学版), 2025, 59(8): 1624-1633.

Xu ZHOU,Ziyu YANG,Junwei ZHANG,Yanling WU,Xiaojie LIN,Wei ZHONG,Baoqin LIU. Optimization of secondary network operation of heating system based on user load quantification. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1624-1633.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.08.009        https://www.zjujournals.com/eng/CN/Y2025/V59/I8/1624

图 1  供热负荷量化模型的典型应用场景
图 2  基于用户负荷量化的二级网运行优化方法流程图
图 3  案例二级网热用户的位置分布
图 4  案例二级网拓扑结构节点分支的示意图
图 5  案例日的室外温度分布
图 6  各热用户的逐时热负荷分布
图 7  热力站的二次侧供温和流量分布
热用户qmt/
(t·h?1
qma/
(t·h?1
kop/
%
热用户qmt/
(t·h?1
qma/
(t·h?1
kop/
%
115.4315.9626.51222.8223.5033.0
215.0314.7434.51325.1024.5932.0
314.9915.9827.01427.5827.9635.0
421.8722.4531.01522.1121.7941.5
515.0414.2729.01625.5125.9442.0
618.5918.4335.51726.4826.6841.5
717.0216.6728.0188.308.1133.0
820.9022.1630.01918.7318.3726.0
920.5520.7728.02016.5117.0336.0
1015.0514.6527.52114.6714.2134.0
1113.9913.8226.5
表 1  某时刻目标流量和实际流量的对比
时间Ph/
(kW·h)
Pop/
(kW·h)
时间Ph/
(kW·h)
Pop/
(kW·h)
14.793.94134.843.67
24.853.87144.533.07
34.313.45154.553.02
45.084.03164.493.11
54.533.65175.043.78
65.204.73184.954.09
74.624.40194.644.01
84.844.90204.424.01
95.044.83214.353.98
104.343.87224.183.78
114.503.67234.053.60
124.583.60244.133.54
表 2  优化后循环水泵的逐时电耗对比
图 8  优化后热用户回温方差和历史回温方差分布的对比
图 9  优化后热力站二次侧阀门开度策略的对比
图 10  优化后热用户1~4的阀门开度策略对比
图 11  优化后热用户5~16的阀门开度策略对比
1 清洁供热产业委员会. 中国清洁供热产业发展报告[EB/OL]. (2022-02-01)[2024-08-01]. https://www.chic.org.cn/home/Index/detail1?id=1778.
2 孙林娜, 刘启明, 许抗吾, 等 基于DeST及TRNSYS软件的公共建筑能耗模型分析[J]. 建筑节能(中英文), 2022, 50 (10): 63- 71
SUN Linna, LIU Qiming, XU Kangwu, et al Analysis of public building energy consumption model based on DeST and TRNSYS software[J]. Journal of Building Energy Efficiency, 2022, 50 (10): 63- 71
3 RAJPUT M, GAHROOEI M R, AUGENBROE G A statistical model of the spatial variability of weather for use in building simulation practice[J]. Building and Environment, 2021, 206: 108331
doi: 10.1016/j.buildenv.2021.108331
4 ZHU D, HONG T, YAN D, et al A detailed loads comparison of three building energy modeling programs: energyPlus, DeST and DOE-2.1E[J]. Building Simulation, 2013, 6 (3): 323- 335
doi: 10.1007/s12273-013-0126-7
5 潘毅群, 魏晋杰, 梁育民, 等 绿色建筑节能技术在典型公共建筑运行中碳减排潜力评估[J]. 暖通空调, 2022, 52 (4): 83- 89
PAN Yiqun, WEI Jinjie, LIANG Yumin, et al Assessing carbon emission reduction potential of green building energy saving technologies in operation of typical public buildings[J]. Journal of HV and AC, 2022, 52 (4): 83- 89
6 于晓娟, 齐先硕, 顾吉浩, 等 基于混合算法优化支持向量机的供热负荷预测模型[J]. 河北工业大学学报, 2019, 48 (5): 39- 46
YU Xiaojuan, QI Xianshuo, GU Jihao, et al Heat load prediction model based on support vector machine optimized by hybrid algorithm[J]. Journal of Hebei University of Technology, 2019, 48 (5): 39- 46
7 CUI C, WU T, HU M, et al Short-term building energy model recommendation system: a meta-learning approach[J]. Applied Energy, 2016, 172: 251- 263
doi: 10.1016/j.apenergy.2016.03.112
8 LIU X, WU X, SANG J, et al Research on the heat supply prediction method of a heat pump system based on timing analysis and a neural network[J]. Energy and Built Environment, 2024, 6 (4): 676- 688
9 TARIKU F, HEMMATI F RC-Network based thermal bridge calculation method for transient heat transfer analysis of multidimensional building envelope details: a frequency response analysis-based method[J]. Energy and Buildings, 2023, 300: 113648
doi: 10.1016/j.enbuild.2023.113648
10 贾文琦, 潘毅群 基于灰箱模型的设计阶段建筑负荷预测方法[J]. 建筑热能通风空调, 2021, 40 (3): 1- 5
JIA Wenqi, PAN Yiqun A grey box model-based method for prediction of building loads in the design phase[J]. Building Energy and Environment, 2021, 40 (3): 1- 5
doi: 10.3969/j.issn.1003-0344.2021.03.001
11 YU X, GEORGES L, IMSLAND L Data pre-processing and optimization techniques for stochastic and deterministic low-order grey-box models of residential buildings[J]. Energy and Buildings, 2021, 236: 110775
doi: 10.1016/j.enbuild.2021.110775
12 ANCONA M A, MELINO F, PERETTO A An optimization procedure for district heating networks[J]. Energy Procedia, 2014, 61: 278- 281
doi: 10.1016/j.egypro.2014.11.1107
13 LIU Z, ZHANG H, WANG Y, et al Data-driven predictive model for feedback control of supply temperature in buildings with radiator heating system[J]. Energy, 2023, 280: 128248
doi: 10.1016/j.energy.2023.128248
14 介鹏飞, 付林 基于实际参数的集中供热系统二次网运行调节[J]. 暖通空调, 2014, 44 (12): 107- 111
JIE Pengfei, FU Lin Operational regulation of the secondary network of district heating systems based on actual parameters[J]. Journal of HV and AC, 2014, 44 (12): 107- 111
15 周璇, 刘国强, 王晓佩, 等 基于动态水力平衡的集中供热系统二次管网节能优化调节方法研究[J]. 中南大学学报: 自然科学版, 2019, 50 (1): 220- 233
ZHOU Xuan, LIU Guoqiang, WANG Xiaopei, et al Study on optimal adjustment method of second pipe network in central heating system based on dynamic hydraulic balance[J]. Journal of Central South University: Science and Technology, 2019, 50 (1): 220- 233
16 ZHAO Bingwen, ZHENG Hanyu, YAN Ruxue Heat distribution of heat exchange station in district heating system based on load forecasting[J]. Thermal Engineering, 2024, 71: 364- 373
doi: 10.1134/S0040601524040086
17 WANG R, CONG M, ZHOU Z, et al Investigation of control characteristics in multi-user building heating system based on demand-side adjustment[J]. Applied Thermal Engineering, 2023, 219: 119534
doi: 10.1016/j.applthermaleng.2022.119534
18 孟亚男, 黄迎旭 基于粒子群优化的神经网络PID控制器在供热系统的研究[J]. 吉林化工学院学报, 2023, 40 (11): 50- 53
MENG Ya’nan, HUANG Yingxu Research on neural network PID controller based on particle swarm optimization in heating system[J]. Journal of Jilin Institute of Chemical Technology, 2023, 40 (11): 50- 53
19 刘鹏飞, 付波 基于遗传算法优化BP神经网络的短期热负荷预测方法研究[J]. 区域供热, 2019, (1): 43- 48
LIU Pengfei, FU Bo Optimization of BP neural network based on genetic algorithm for heat load forecasting[J]. District Heating, 2019, (1): 43- 48
20 闫群民, 马瑞卿, 马永翔, 等 一种自适应模拟退火粒子群优化算法[J]. 西安电子科技大学学报, 2021, 48 (4): 120- 127
YAN Qunmin, MA Ruiqing, MA Yongxiang, et al Adaptive simulated annealing particle swarm optimization algorithm[J]. Journal of Xidian University, 2021, 48 (4): 120- 127
21 陈彬彬, 孙宏斌, 尹冠雄, 等 综合能源系统分析的统一能路理论(二): 水路与热路[J]. 中国电机工程学报, 2020, 40 (7): 2133- 2142
CHEN Binbin, SUN Hongbin, YIN Guanxiong, et al Energy circuit theory of integrated energy system analysis (II): hydraulic circuit and thermal circuit[J]. Proceedings of the CSEE, 2020, 40 (7): 2133- 2142
[1] 杜玉吉,钟崴,钱辉金,俞自涛. 计及区域建筑群生长特性的动态冷热负荷预测[J]. 浙江大学学报(工学版), 2024, 58(1): 140-149.
[2] 范海东,陈竹,赵中阳,梁成思,郑成航,高翔. 1 000 MW燃煤机组湿法脱硫装置氧化系统运行优化[J]. 浙江大学学报(工学版), 2023, 57(4): 675-682.
[3] 陈嘉映,李仲博,林小杰,刘荣,钟崴,俞自涛. 基于映射模型的城市热网热能输运灵活性研究[J]. 浙江大学学报(工学版), 2021, 55(11): 2125-2133.