机械工程、能源工程 |
|
|
|
|
基于用户负荷量化的供热系统二级网运行优化 |
周旭1,2( ),杨子毓1,张俊伟1,吴燕玲3,*( ),林小杰3,钟崴1,3,刘宝芹2 |
1. 浙江大学 工程师学院,浙江 杭州 310015 2. 济南热力集团有限公司,山东 济南 250000 3. 浙江大学 能源工程学院,浙江 杭州 310007 |
|
Optimization of secondary network operation of heating system based on user load quantification |
Xu ZHOU1,2( ),Ziyu YANG1,Junwei ZHANG1,Yanling WU3,*( ),Xiaojie LIN3,Wei ZHONG1,3,Baoqin LIU2 |
1. Polytechnic Institute, Zhejiang University, Hangzhou 310015, China 2. Jinan Heating Group Limited Company, Jinan 250000, China 3. College of Energy Engineering, Zhejiang University, Hangzhou 310007, China |
引用本文:
周旭,杨子毓,张俊伟,吴燕玲,林小杰,钟崴,刘宝芹. 基于用户负荷量化的供热系统二级网运行优化[J]. 浙江大学学报(工学版), 2025, 59(8): 1624-1633.
Xu ZHOU,Ziyu YANG,Junwei ZHANG,Yanling WU,Xiaojie LIN,Wei ZHONG,Baoqin LIU. Optimization of secondary network operation of heating system based on user load quantification. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1624-1633.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.08.009
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I8/1624
|
1 |
清洁供热产业委员会. 中国清洁供热产业发展报告[EB/OL]. (2022-02-01)[2024-08-01]. https://www.chic.org.cn/home/Index/detail1?id=1778.
|
2 |
孙林娜, 刘启明, 许抗吾, 等 基于DeST及TRNSYS软件的公共建筑能耗模型分析[J]. 建筑节能(中英文), 2022, 50 (10): 63- 71 SUN Linna, LIU Qiming, XU Kangwu, et al Analysis of public building energy consumption model based on DeST and TRNSYS software[J]. Journal of Building Energy Efficiency, 2022, 50 (10): 63- 71
|
3 |
RAJPUT M, GAHROOEI M R, AUGENBROE G A statistical model of the spatial variability of weather for use in building simulation practice[J]. Building and Environment, 2021, 206: 108331
doi: 10.1016/j.buildenv.2021.108331
|
4 |
ZHU D, HONG T, YAN D, et al A detailed loads comparison of three building energy modeling programs: energyPlus, DeST and DOE-2.1E[J]. Building Simulation, 2013, 6 (3): 323- 335
doi: 10.1007/s12273-013-0126-7
|
5 |
潘毅群, 魏晋杰, 梁育民, 等 绿色建筑节能技术在典型公共建筑运行中碳减排潜力评估[J]. 暖通空调, 2022, 52 (4): 83- 89 PAN Yiqun, WEI Jinjie, LIANG Yumin, et al Assessing carbon emission reduction potential of green building energy saving technologies in operation of typical public buildings[J]. Journal of HV and AC, 2022, 52 (4): 83- 89
|
6 |
于晓娟, 齐先硕, 顾吉浩, 等 基于混合算法优化支持向量机的供热负荷预测模型[J]. 河北工业大学学报, 2019, 48 (5): 39- 46 YU Xiaojuan, QI Xianshuo, GU Jihao, et al Heat load prediction model based on support vector machine optimized by hybrid algorithm[J]. Journal of Hebei University of Technology, 2019, 48 (5): 39- 46
|
7 |
CUI C, WU T, HU M, et al Short-term building energy model recommendation system: a meta-learning approach[J]. Applied Energy, 2016, 172: 251- 263
doi: 10.1016/j.apenergy.2016.03.112
|
8 |
LIU X, WU X, SANG J, et al Research on the heat supply prediction method of a heat pump system based on timing analysis and a neural network[J]. Energy and Built Environment, 2024, 6 (4): 676- 688
|
9 |
TARIKU F, HEMMATI F RC-Network based thermal bridge calculation method for transient heat transfer analysis of multidimensional building envelope details: a frequency response analysis-based method[J]. Energy and Buildings, 2023, 300: 113648
doi: 10.1016/j.enbuild.2023.113648
|
10 |
贾文琦, 潘毅群 基于灰箱模型的设计阶段建筑负荷预测方法[J]. 建筑热能通风空调, 2021, 40 (3): 1- 5 JIA Wenqi, PAN Yiqun A grey box model-based method for prediction of building loads in the design phase[J]. Building Energy and Environment, 2021, 40 (3): 1- 5
doi: 10.3969/j.issn.1003-0344.2021.03.001
|
11 |
YU X, GEORGES L, IMSLAND L Data pre-processing and optimization techniques for stochastic and deterministic low-order grey-box models of residential buildings[J]. Energy and Buildings, 2021, 236: 110775
doi: 10.1016/j.enbuild.2021.110775
|
12 |
ANCONA M A, MELINO F, PERETTO A An optimization procedure for district heating networks[J]. Energy Procedia, 2014, 61: 278- 281
doi: 10.1016/j.egypro.2014.11.1107
|
13 |
LIU Z, ZHANG H, WANG Y, et al Data-driven predictive model for feedback control of supply temperature in buildings with radiator heating system[J]. Energy, 2023, 280: 128248
doi: 10.1016/j.energy.2023.128248
|
14 |
介鹏飞, 付林 基于实际参数的集中供热系统二次网运行调节[J]. 暖通空调, 2014, 44 (12): 107- 111 JIE Pengfei, FU Lin Operational regulation of the secondary network of district heating systems based on actual parameters[J]. Journal of HV and AC, 2014, 44 (12): 107- 111
|
15 |
周璇, 刘国强, 王晓佩, 等 基于动态水力平衡的集中供热系统二次管网节能优化调节方法研究[J]. 中南大学学报: 自然科学版, 2019, 50 (1): 220- 233 ZHOU Xuan, LIU Guoqiang, WANG Xiaopei, et al Study on optimal adjustment method of second pipe network in central heating system based on dynamic hydraulic balance[J]. Journal of Central South University: Science and Technology, 2019, 50 (1): 220- 233
|
16 |
ZHAO Bingwen, ZHENG Hanyu, YAN Ruxue Heat distribution of heat exchange station in district heating system based on load forecasting[J]. Thermal Engineering, 2024, 71: 364- 373
doi: 10.1134/S0040601524040086
|
17 |
WANG R, CONG M, ZHOU Z, et al Investigation of control characteristics in multi-user building heating system based on demand-side adjustment[J]. Applied Thermal Engineering, 2023, 219: 119534
doi: 10.1016/j.applthermaleng.2022.119534
|
18 |
孟亚男, 黄迎旭 基于粒子群优化的神经网络PID控制器在供热系统的研究[J]. 吉林化工学院学报, 2023, 40 (11): 50- 53 MENG Ya’nan, HUANG Yingxu Research on neural network PID controller based on particle swarm optimization in heating system[J]. Journal of Jilin Institute of Chemical Technology, 2023, 40 (11): 50- 53
|
19 |
刘鹏飞, 付波 基于遗传算法优化BP神经网络的短期热负荷预测方法研究[J]. 区域供热, 2019, (1): 43- 48 LIU Pengfei, FU Bo Optimization of BP neural network based on genetic algorithm for heat load forecasting[J]. District Heating, 2019, (1): 43- 48
|
20 |
闫群民, 马瑞卿, 马永翔, 等 一种自适应模拟退火粒子群优化算法[J]. 西安电子科技大学学报, 2021, 48 (4): 120- 127 YAN Qunmin, MA Ruiqing, MA Yongxiang, et al Adaptive simulated annealing particle swarm optimization algorithm[J]. Journal of Xidian University, 2021, 48 (4): 120- 127
|
21 |
陈彬彬, 孙宏斌, 尹冠雄, 等 综合能源系统分析的统一能路理论(二): 水路与热路[J]. 中国电机工程学报, 2020, 40 (7): 2133- 2142 CHEN Binbin, SUN Hongbin, YIN Guanxiong, et al Energy circuit theory of integrated energy system analysis (II): hydraulic circuit and thermal circuit[J]. Proceedings of the CSEE, 2020, 40 (7): 2133- 2142
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|