Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (8): 1617-1623    DOI: 10.3785/j.issn.1008-973X.2025.08.008
机械工程、能源工程     
水下不完全信息的微分博弈机动攻防导引律设计
韩冬阳1(),张倩倩1,2,汪海涛1,印明明1
1. 上海船舶电子设备研究所,上海 201108
2. 上海交通大学 机械与动力工程学院,上海 200240
Design of maneuvering attack-defense guidance law for differential game with underwater incomplete information
Dongyang HAN1(),Qianqian ZHANG1,2,Haitao WANG1,Mingming YIN1
1. Shanghai Marine Electronic Equipment Research Institute, Shanghai 201108, China
2. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(1095 KB)   HTML
摘要:

针对水下机动攻防环境中信息不完全问题,基于微分博弈理论,开展目标-攻击者-防御者的导引律设计研究. 通过相对运动关系与博弈最优条件,获得满足纳什均衡的航行反馈控制形式. 考虑航行器运动控制与观测含噪因素,设计基于随机微分博弈的改进导引策略. 结合离散观测信息条件,推导鞍点博弈对. 调整对策,使导引控制对策更贴近现实探测. 通过对策模拟与对比,验证所提博弈求解结果在递进信息限制条件下的有效性. 结果显示,所提策略的表现良好,可以为不完全信息机动导引律的设计提供指导.

关键词: 机动攻防不完全信息导引律随机微分博弈    
Abstract:

Research was conducted on the design of guidance laws for targets, attackers and defenders based on differential game theory aiming at the issue of incomplete information in underwater maneuvering attack-defense environment. A navigation feedback control form that satisfied Nash equilibrium was obtained by using relative motion relationships and game-theoretic optimal conditions. An improved guidance strategy based on stochastic differential games was designed by considering the noisy factors in aircraft motion control and observation. The saddle-point game pair was derived by combining the conditions of discrete observation information. The game countermeasures were adjusted to make the guidance control countermeasures closer to real-world detection. The effectiveness of the proposed method under progressive information constraint conditions was verified through game simulation and comparison. Results show that the proposed strategy performs well and can provide guidance for the design of maneuvering guidance laws with incomplete information.

Key words: maneuvering attack-defense    incomplete information    guidance law    stochastic differential game
收稿日期: 2024-07-28 出版日期: 2025-07-28
:  TJ 630  
基金资助: 智能博弈重点实验室创新工作站开放课题(ZBKF-24-03).
作者简介: 韩冬阳(1998—),男,助理工程师,从事水下博弈策略的研究. orcid.org/0000-0002-3711-4744. E-mail: 1061118711@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
韩冬阳
张倩倩
汪海涛
印明明

引用本文:

韩冬阳,张倩倩,汪海涛,印明明. 水下不完全信息的微分博弈机动攻防导引律设计[J]. 浙江大学学报(工学版), 2025, 59(8): 1617-1623.

Dongyang HAN,Qianqian ZHANG,Haitao WANG,Mingming YIN. Design of maneuvering attack-defense guidance law for differential game with underwater incomplete information. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1617-1623.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.08.008        https://www.zjujournals.com/eng/CN/Y2025/V59/I8/1617

图 1  初始态势的模拟演示
图 2  短博弈时长下的三方攻防运动轨迹
图 3  长博弈时长下的三方攻防运动轨迹
图 4  各类导引对比方法的运动轨迹
博弈条件微分博弈方法定加速度方法尾追方向方法环状-直航方法
终端距离总支付终端距离总支付终端距离总支付终端距离总支付
完全信息0.006174.99016.99045.83046.92
观测含噪信息2.548779.780.52320.380.114454.321.439046.82
离散间隔信息3.076376.120.000218.580.009142.001.235048.17
表 1  各类导引方法的博弈结果对比
图 5  控制与观测误差系数的鲁棒性分析
图 6  离散观测的鲁棒性分析
1 SARKAR M, NANDY S, VADALI S R K, et al Modeling and simulation of a robust energy efficient auv controller[J]. Mathematics and Computers in Simulation, 2016, 121 (3): 34- 47
2 FERRI G, MUNAFO A, LEPAGE K D. An autonomous underwater vehicle data driven control strategy for target tracking [J]. IEEE Journal of Oceanic Engineering, 2018, 43(2): 323-343.
3 CHOI H, TAHK M, BANG H Neural network guidance based on pursuit-evasion games with enhanced performance[J]. Control Engineering Practice, 2006, 14 (7): 735- 742
doi: 10.1016/j.conengprac.2005.03.001
4 赵慧瑾, 陈彧 基于矩阵博弈的智能水声对抗建模与仿真[J]. 系统仿真学报, 2025, 37 (5): 1329- 1342
ZHAO Huijin, CHEN Yu Modeling and simulation of intelligent underwater acoustic countermeasure based on the matrix game[J]. Journal of System Simulation, 2025, 37 (5): 1329- 1342
5 王钊, 王宏健, 张宏瀚, 等 UUV攻防博弈的自适应攻击占位机动决策研究[J]. 控制与决策, 2024, 39 (11): 3819- 3828
WANG Zhao, WANG Hongjian, ZHANG Honghan, et al Adaptive attack occupancy maneuver decision of UUV attack-defense game[J]. Control and Decision, 2024, 39 (11): 3819- 3828
6 邵剑 时间定量微分对策最优性的充分条件[J]. 浙江大学学报, 1997, 31 (6): 6
SHAO Jian The sufficient condition for the optimality of a quantitative differential games[J]. Journal of Zhejiang University, 1997, 31 (6): 6
7 ISAACS R. Differential games [M]. New York: Wiley, 1965.
8 孙景瑞. 线性二次二人零和随机微分对策 [D]. 合肥: 中国科学技术大学, 2014.
SUN Jingrui. Linear quadratic two-person zero-sum stochastic differential games [D]. Hefei: University of Science and Technology of China, 2014.
9 SAID H, MU R Discontinuous Nash equilibrium points for nonzero-sum stochastic differential games[J]. Stochastic Processes and their Applications, 2020, 130 (11): 6901- 6929
doi: 10.1016/j.spa.2020.07.003
10 周健, 张玉华 传统零售商渠道选择策略微分博弈模型[J]. 浙江大学学报: 工学版, 2019, 53 (9): 1720- 1727
ZHOU Jian, ZHANG Yuhua Differential game model for channel selection strategies of traditional retailer[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (9): 1720- 1727
11 段佳南, 谢俊, 邢单玺 风电-光伏-抽蓄-电制氢多主体能源系统增益的合作博弈分配策略[J]. 上海交通大学学报, 2024, 58 (6): 872- 880
DUAN Jianan, XIE Jun, XING Shanxi A cooperative game allocation strategy for wind-solar-pumped storage-hydrogen muti-stakeholder energy system[J]. Journal of Shanghai Jiao Tong University, 2024, 58 (6): 872- 880
12 FARUQI F A. Differential game theory with applications to missiles and autonomous systems guidance [M]. Hoboken: Wiley, 2017.
13 WHITE B A, ZBIKOWSKI R, TSOURDOS A Direct intercept guidance using differential geometry concepts[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43 (3): 1- 5
doi: 10.1109/TAES.2007.4383574
14 周俊峰. 基于微分对策理论的航天器追逃控制方法研究 [D]. 哈尔滨: 哈尔滨工程大学, 2021.
ZHOU Junfeng. Research on control method for spacecraft pursuit-evasion based on differential game theory [D]. Harbin: Harbin Engineering University, 2021.
15 SINGH S K, REDDY P V Dynamic network analysis of a target defense differential game with limited observations[J]. IEEE Transactions on Control of Network Systems, 2022, 10 (1): 308- 320
16 LI D, CRUZ J B Defending an asset: a linear quadratic game approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47 (2): 1026- 1044
doi: 10.1109/TAES.2011.5751240
17 程瑞锋, 刘卫东, 高立娥, 等 多约束受扰追踪的微分对策滚动时域轨迹优化[J]. 上海交通大学学报, 2017, 51 (12): 1473- 1479
CHENG Ruifeng, LIU Weidong, GAO Li’e, et al Differential game trajectory optimization based on receding horizon control for multiple constraints tracking systems with additive disturbance[J]. Journal of Shanghai Jiao Tong University, 2017, 51 (12): 1473- 1479
18 严卫生. 鱼雷航行力学 [M]. 西安: 西北工业大学出版社, 2005.
No related articles found!