计算机技术 |
|
|
|
|
数据驱动的智能计算及其应用研究综述 |
戴瑞1( ),介婧2,王万良1,*( ),叶倩琳1,吴菲1 |
1. 浙江工业大学 计算机科学与技术学院,浙江 杭州 310023 2. 浙江科技大学 自动化与电气工程学院,浙江 杭州 310023 |
|
Review of data-driven intelligent computation and its application |
Rui DAI1( ),Jing JIE2,Wanliang WANG1,*( ),Qianlin YE1,Fei WU1 |
1. College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China 2. School of Automation and Electrical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China |
引用本文:
戴瑞,介婧,王万良,叶倩琳,吴菲. 数据驱动的智能计算及其应用研究综述[J]. 浙江大学学报(工学版), 2025, 59(2): 227-248.
Rui DAI,Jing JIE,Wanliang WANG,Qianlin YE,Fei WU. Review of data-driven intelligent computation and its application. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 227-248.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.02.002
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I2/227
|
1 |
CHENG L, TANG Q, ZHANG L, et al Multi-objective Q-learning-based hyper-heuristic with bi-criteria selection for energy-aware mixed shop scheduling[J]. Swarm and Evolutionary Computation, 2022, 69 (100985): 1- 16
|
2 |
CHANG J, LI Z, HUANG Y, et al Multi-objective optimization of a novel combined cooling, dehumidification and power system using improved M-PSO algorithm[J]. Energy, 2022, 239 (122487): 1- 16
|
3 |
DUAN C, ZHANG P. Path planning for welding robot based on ant colony optimization algorithm [C]// 3rd International Conference on Artificial Intelligence and Advanced Manufacture . Manchester: IEEE, 2021: 371-374.
|
4 |
PRITHI S, SUMATHI S Automata based hybrid PSO–GWO algorithm for secured energy efficient optimal routing in wireless sensor network[J]. Wireless Personal Communications, 2021, 2 (117): 1- 15
|
5 |
EMMERICH M, GIOTIS A, OZDEMIR M, et al. Metamodel-assisted evolution strategies [C]// International Conference on Parallel Problem Solving from Nature . Heidelberg: Springer, 2002: 361–370.
|
6 |
JIN Y Surrogate-assisted evolutionary computation: recent advances and future challenges[J]. Swarm and Evolutionary Computation, 2011, 1 (2): 61- 70
doi: 10.1016/j.swevo.2011.05.001
|
7 |
JIN Y, WANG H, CHUGH T, et al Data-driven evolutionary optimization: an overview and case studies[J]. IEEE Transactions on Evolutionary Computation, 2019, 23 (3): 442- 458
doi: 10.1109/TEVC.2018.2869001
|
8 |
WANG H, JIN Y, SUN C, et al Offline data-driven evolutionary optimization using selective surrogate ensembles[J]. IEEE Transactions on Evolutionary Computation, 2018, 23 (2): 203- 216
|
9 |
MOINGEON P, KUENEMANN M, GUEDJ M Artificial intelligence-enhanced drug design and development: toward a computational precision medicine[J]. Drug Discovery Today, 2022, 27 (1): 215- 222
doi: 10.1016/j.drudis.2021.09.006
|
10 |
WANG H, JIN Y, JANSEN J O Data-driven surrogate-assisted multi-objective evolutionary optimization of a trauma system[J]. IEEE Transactions on Evolutionary Computation, 2016, 20 (6): 939- 952
doi: 10.1109/TEVC.2016.2555315
|
11 |
JIN Y, SENDHOFF B A systems approach to evolutionary multi-objective structural optimization and beyond[J]. IEEE Computational Intelligence Magazine, 2009, 4 (3): 62- 76
doi: 10.1109/MCI.2009.933094
|
12 |
LI J, ZHAN Z, ZHANG J Evolutionary computation for expensive optimization: a survey[J]. Machine Intelligence Research, 2022, 19 (1): 3- 23
doi: 10.1007/s11633-022-1317-4
|
13 |
CAI X, RUAN G, YUAN B, et al Complementary surrogate-assisted differential evolution algorithm for expensive multi-objective problems under a limited computational budget[J]. Information Sciences, 2023, 632: 791- 814
doi: 10.1016/j.ins.2023.03.005
|
14 |
CHUGH T, SINDHYA K, HAKANEN J, et al A survey on handling computationally expensive multi-objective optimization problems with evolutionary algorithms[J]. Soft Computing, 2019, 23: 3137- 3166
doi: 10.1007/s00500-017-2965-0
|
15 |
ALLMENDINGER R, EMMERICH M, HAKANEN J, et al Surrogate-assisted multicriteria optimization: complexities, prospective solutions, and business case[J]. Journal of Multi-Criteria Decision Analysis, 2017, 24 (1/2): 5- 24
doi: 10.1002/mcda.1605
|
16 |
ONG Y, NAIR P, KEANE A, et al Surrogate-assisted evolutionary optimization frameworks for high-fidelity engineering design problems[J]. Knowledge Incorporation in Evolutionary Computation, 2005, 167: 307- 331
|
17 |
SANTANA Q, MONTANO A, COELLO C A review of techniques for handling expensive functions in evolutionary multi-objective optimization[J]. Computational Intelligence in Expensive Optimization Problems, 2010, 2: 29- 59
|
18 |
TABATABAEI M, HAKANEN J, HARTIKAINEN M, et al A survey on handling computationally expensive multi-objective optimization problems using surrogates: non-nature inspired methods[J]. Structural and Multidisciplinary Optimization, 2015, 52 (1): 1- 25
doi: 10.1007/s00158-015-1226-z
|
19 |
HE C, ZHANG Y, GONG D, et al A review of surrogate-assisted evolutionary algorithms for expensive optimization problems[J]. Expert Systems with Applications, 2023, 217 (119495): 1- 13
|
20 |
ZHAO T, TU W, FANG Z, et al Optimizing living material delivery during the COVID-19 outbreak[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23 (7): 6709- 6719
|
21 |
JIN Y. Data driven evolutionary optimization of complex systems: big data versus small data [C]// 18th Genetic and Evolutionary Computation Conference Companion . New York: ACM, 2016: 1281-1282.
|
22 |
QIN H, HUANG W, SONG B, et al Hybrid method for inverse design of orbital angular momentum transmission fiber based on neural network and optimization algorithms[J]. Journal of Lightwave Technology, 2022, 40 (17): 5974- 5985
doi: 10.1109/JLT.2022.3185059
|
23 |
WÖHRLE H, SCHNEIDER F, SCHLENKE F, et al Multi-objective surrogate-model-based neural architecture and physical design co-optimization of energy efficient neural network hardware accelerators[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 70 (1): 40- 53
|
24 |
LIU Y, WANG H Surrogate-assisted hybrid evolutionary algorithm with local estimation of distribution for expensive mixed-variable optimization problems[J]. Applied Soft Computing, 2023, 133 (109957): 1- 16
|
25 |
LI J, ZHAN Z, XU J, et al Surrogate-assisted hybrid-model estimation of distribution algorithm for mixed-variable hyperparameters optimization in convolutional neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 43 (5): 2338- 2352
|
26 |
RAHI K, SINGH H, RAY T. A Generalized surrogate-assisted evolutionary algorithm for expensive multi-objective optimization [C]// IEEE Congress on Evolutionary Computation . Chicago: IEEE, 2023: 1-8.
|
27 |
ZHOU Y, HE X, CHEN Z, et al A neighborhood regression optimization algorithm for computationally expensive optimization problems[J]. IEEE Transactions on Cybernetics, 2020, 52 (5): 3018- 3031
|
28 |
TONG H, HUANG C, MINKU L L, et al Surrogate models in evolutionary single-objective optimization: a new taxonomy and experimental study[J]. Information Sciences, 2021, 562: 414- 437
doi: 10.1016/j.ins.2021.03.002
|
29 |
WANG X, JIN Y, SCHMITT S, et al An adaptive Bayesian approach to surrogate-assisted evolutionary multi-objective optimization[J]. Information Sciences, 2020, 519: 317- 331
doi: 10.1016/j.ins.2020.01.048
|
30 |
LU L, ZHENG H, JIE J, et al Reinforcement learning-based particle swarm optimization for sewage treatment control[J]. Complex and Intelligent Systems, 2021, 7 (5): 2199- 2210
doi: 10.1007/s40747-021-00395-w
|
31 |
SUN Y, WANG H, XUE B, et al Surrogate-assisted evolutionary deep learning using an end-to-end random forest-based performance predictor[J]. IEEE Transactions on Evolutionary Computation, 2020, 24 (2): 350- 364
doi: 10.1109/TEVC.2019.2924461
|
32 |
ZHOU Y, JIN Y, SUN Y, et al Surrogate-assisted cooperative co-evolutionary reservoir architecture search for liquid state machines[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7 (5): 1484- 1498
doi: 10.1109/TETCI.2022.3228538
|
33 |
THIRUVADY D, NGUYEN S, SHIRI F, et al Surrogate-assisted population based ACO for resource constrained job scheduling with uncertainty[J]. Swarm and Evolutionary Computation, 2022, 69 (101029): 1- 16
|
34 |
ZHANG J, ZHOU A, ZHANG G. A classification and Pareto domination based multi-objective evolutionary algorithm [C]// IEEE Congress on Evolutionary Computation . Sendai: IEEE, 2015: 2883-2890.
|
35 |
ZHANG T, LI F, ZHAO X, et al A convolutional neural network-based surrogate model for multi-objective optimization evolutionary algorithm based on decomposition[J]. Swarm and Evolutionary Computation, 2022, 72 (101081): 1- 10
|
36 |
LIANG Z, LI Y, WAN Z. Large scale many-objective optimization driven by distributional adversarial networks[EB/OL].[2024-02-01]. https://arxiv.org/abs/2003.07013.
|
37 |
GUO D, WANG X, GAO K, et al Evolutionary optimization of high-dimensional multi-objective and many-objective expensive problems assisted by a dropout neural network[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 52 (4): 2084- 2097
|
38 |
HUANG P, WANG H Comparative empirical study on constraint handling in offline data-driven evolutionary optimization[J]. Applied Soft Computing, 2021, 110 (107603): 1- 11
|
39 |
LI J Y, ZHAN Z H, WANG C, et al Boosting data-driven evolutionary algorithm with localized data generation[J]. IEEE Transactions on Evolutionary Computation, 2020, 24 (5): 923- 937
doi: 10.1109/TEVC.2020.2979740
|
40 |
LI J, ZHAN Z, WANG H, et al Data-driven evolutionary algorithm with perturbation-based ensemble surrogates[J]. IEEE Transactions on Cybernetics, 2020, 51 (8): 3925- 3937
|
41 |
HUANG P, WANG H, MA W. Stochastic ranking for offline data-driven evolutionary optimization using radial basis function networks with multiple kernels [C]// IEEE Symposium Series on Computational Intelligence . Xiamen: IEEE, 2019: 2050-2057.
|
42 |
HUANG P, WANG H, JIN Y Offline data-driven evolutionary optimization based on tri-training[J]. Swarm and Evolutionary Computation, 2021, 60 (100800): 1- 12
|
43 |
ZHEN H, GONG W, WANG L Offline data-driven evolutionary optimization based on model selection[J]. Swarm and Evolutionary Computation, 2022, 71 (101080): 1- 13
|
44 |
FAN C, HOU B, ZHENG J, et al A surrogate-assisted particle swarm optimization using ensemble learning for expensive problems with small sample datasets[J]. Applied Soft Computing, 2020, 91 (106242): 1- 17
|
45 |
CHUGH T, CHAKRABORTI N, SINDHYA K, et al A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem[J]. Materials and Manufacturing Processes, 2017, 32 (10): 1172- 1178
doi: 10.1080/10426914.2016.1269923
|
46 |
FARZANEH M, MAHDIAN TOROGHI R. Music generation using an interactive evolutionary algorithm [C]// Mediterranean Conference on Pattern Recognition and Artificial Intelligence . Istanbul: Springer, 2020: 207-217.
|
47 |
GUO D, CHAI T, DING J, et al. Small data driven evolutionary multi-objective optimization of fused magnesium furnaces [C]// IEEE Symposium Series on Computational Intelligence . Athens: IEEE, 2016: 1-8.
|
48 |
LIU Y, LIU J, JIN Y, et al A surrogate-assisted two-stage differential evolution for expensive constrained optimization[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7 (3): 715- 730
doi: 10.1109/TETCI.2023.3240221
|
49 |
SI L, ZHANG X, TIAN Y, et al Linear subspace surrogate modeling for large-scale expensive single/multi-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2023, 1 (1): 1- 16
|
50 |
HUANG H G, GONG Y J Contrastive learning: An alternative surrogate for offline data-driven evolutionary computation[J]. IEEE Transactions on Evolutionary Computation, 2022, 27 (2): 370- 384
|
51 |
GONG Y, ZHONG Y, HUANG H Offline data-driven optimization at scale: a cooperative coevolutionary approach[J]. IEEE Transactions on Evolutionary Computation, 2023, 1 (2): 1- 15
|
52 |
ZHEN H, GONG W, WANG L, et al Two-stage data-driven evolutionary optimization for high-dimensional expensive problems[J]. IEEE Transactions on Cybernetics, 2021, 53 (4): 2368- 2379
|
53 |
WEI F, CHEN W, MAO W, et al An efficient two-stage surrogate-assisted differential evolution for expensive inequality constrained optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53 (12): 7769- 7782
doi: 10.1109/TSMC.2023.3299434
|
54 |
WANG H, JIN Y A random forest-assisted evolutionary algorithm for data-driven constrained multi-objective combinatorial optimization of trauma systems[J]. IEEE Transactions on Cybernetics, 2018, 50 (2): 536- 549
|
55 |
MAZUMDAR A, CHUGH T, HAKANEN J, et al Probabilistic selection approaches in decomposition-based evolutionary algorithms for offline data-driven multi-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2022, 26 (5): 1182- 1191
doi: 10.1109/TEVC.2022.3154231
|
56 |
LIU Z, WANG H, JIN Y Performance indicator-based adaptive model selection for offline data-driven multi-objective evolutionary optimization[J]. IEEE Transactions on Cybernetics, 2022, 53 (10): 6263- 6276
|
57 |
GONG Y J, GUO J X, LIN D L, et al Automated team assembly in mobile games: a data-driven evolutionary approach using a deep learning surrogate[J]. IEEE Transactions on Games, 2022, 15 (1): 67- 80
|
58 |
NESHAT M, ALEXANDER B, WAGNER M A hybrid cooperative co-evolution algorithm framework for optimising power take off and placements of wave energy converters[J]. Information Sciences, 2020, 534: 218- 244
doi: 10.1016/j.ins.2020.03.112
|
59 |
LIU Y, LIU J, JIN Y Surrogate-assisted multi-population particle swarm optimizer for high-dimensional expensive optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 52 (7): 4671- 4684
|
60 |
TIAN J, SUN C, TAN Y, et al Granularity-based surrogate-assisted particle swarm optimization for high-dimensional expensive optimization[J]. Knowledge-based Systems, 2020, 187 (104815): 1- 15
|
61 |
LI F, CAI X, GAO L, et al A surrogate-assisted multi-swarm optimization algorithm for high-dimensional computationally expensive problems[J]. IEEE Transactions on Cybernetics, 2020, 51 (3): 1390- 1402
|
62 |
LI F, LI Y, CAI X, et al A surrogate-assisted hybrid swarm optimization algorithm for high-dimensional computationally expensive problems[J]. Swarm and Evolutionary Computation, 2022, 72 (101096): 1- 16
|
63 |
ZHAO L, HU Y, WANG B, et al A surrogate-assisted evolutionary algorithm based on multi-population clustering and prediction for solving computationally expensive dynamic optimization problems[J]. Expert Systems with Applications, 2023, 223 (119815): 1- 18
|
64 |
LIU Y, LIU J, TAN S Decision space partition based surrogate-assisted evolutionary algorithm for expensive optimization[J]. Expert Systems with Applications, 2023, 214 (119075): 1- 20
|
65 |
WANG Y, LIN J, LIU J, et al Surrogate-assisted differential evolution with region division for expensive optimization problems with discontinuous responses[J]. IEEE Transactions on Evolutionary Computation, 2021, 26 (4): 780- 792
|
66 |
SUN C, JIN Y, CHENG R, et al Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems[J]. IEEE Transactions on Evolutionary Computation, 2017, 21 (4): 644- 660
doi: 10.1109/TEVC.2017.2675628
|
67 |
WU X, LIN Q, LI J, et al An ensemble surrogate-based coevolutionary algorithm for solving large-scale expensive optimization problems[J]. IEEE Transactions on Cybernetics, 2023, 53 (9): 5854- 5866
doi: 10.1109/TCYB.2022.3200517
|
68 |
ZHAO F, BAO H, WANG L, et al A multi-population cooperative coevolutionary whale optimization algorithm with a two-stage orthogonal learning mechanism[J]. Knowledge-based Systems, 2022, 246 (108664): 1- 33
|
69 |
CHEN A, REN Z, WANG M, et al A surrogate-assisted highly cooperative coevolutionary algorithm for hyperparameter optimization in deep convolutional neural network[J]. Applied Soft Computing, 2023, 147 (11079): 1- 13
|
70 |
LIU C, WAN Z, LIU Y, et al Trust-region based adaptive radial basis function algorithm for global optimization of expensive constrained black-box problems[J]. Applied Soft Computing, 2021, 105 (107233): 1- 17
|
71 |
WANG H, JIN Y, DOHERTY J Committee-based active learning for surrogate-assisted particle swarm optimization of expensive problems[J]. IEEE Transactions on Cybernetics, 2017, 47 (9): 2664- 2677
doi: 10.1109/TCYB.2017.2710978
|
72 |
YU H, TAN Y, ZENG J, et al Surrogate-assisted hierarchical particle swarm optimization[J]. Information Sciences, 2018, 454: 59- 72
|
73 |
CHU S, DU Z, PENG Y, et al Fuzzy hierarchical surrogate assists probabilistic particle swarm optimization for expensive high dimensional problem[J]. Knowledge-based Systems, 2021, 220 (106939): 1- 15
|
74 |
ZHANG J, LI M, YUE X, et al A hierarchical surrogate assisted optimization algorithm using teaching-learning-based optimization and differential evolution for high-dimensional expensive problems[J]. Applied Soft Computing, 2024, 152 (111212): 1- 26
|
75 |
SUN C, JIN Y, ZENG J, et al A two-layer surrogate-assisted particle swarm optimization algorithm[J]. Soft computing, 2015, 19: 1461- 1475
doi: 10.1007/s00500-014-1283-z
|
76 |
REN X, GUO D, REN Z, et al Enhancing hierarchical surrogate-assisted evolutionary algorithm for high-dimensional expensive optimization via random projection[J]. Complex and Intelligent Systems, 2021, 7: 2961- 2975
doi: 10.1007/s40747-021-00484-w
|
77 |
YANG S, QI Y, YANG R, et al A surrogate assisted evolutionary multi-tasking optimization algorithm[J]. Applied Soft Computing, 2023, 132 (109775): 1- 13
|
78 |
GUPTA A, ONG Y S, FENG L Multi-factorial evolution: toward evolutionary multi-tasking[J]. IEEE Transactions on Evolutionary Computation, 2015, 20 (3): 343- 357
|
79 |
WANG H, FENG L, JIN Y, et al Surrogate-assisted evolutionary multi-tasking for expensive minimax optimization in multiple scenarios[J]. IEEE Computational Intelligence Magazine, 2021, 16 (1): 34- 48
doi: 10.1109/MCI.2020.3039067
|
80 |
HUANG S, ZHONG J, YU W Surrogate-assisted evolutionary framework with adaptive knowledge transfer for multi-tasking optimization[J]. IEEE Transactions on Emerging Topics in Computing, 2019, 9 (4): 1930- 1944
|
81 |
LIAO P, SUN C, ZHANG G, et al Multi-surrogate multi-tasking optimization of expensive problems[J]. Knowledge-based Systems, 2020, 205 (106262): 1- 14
|
82 |
RUSSO I, BARBOSA H A. Multi-tasking surrogate-assisted differential evolution method for solving bi-level optimization problems [C]// IEEE Congress on Evolutionary Computation . Padua: IEEE, 2022: 1-8.
|
83 |
JI X, ZHANG Y, GONG D, et al Multi-surrogate-assisted multi-tasking particle swarm optimization for expensive multi-modal problems[J]. IEEE Transactions on Cybernetics, 2021, 53 (4): 2516- 2530
|
84 |
ZHU H, SHI L, HU Z, et al A multi-surrogate multi-tasking genetic algorithm with an adaptive training sample selection strategy for expensive optimization problems[J]. Engineering Applications of Artificial Intelligence, 2024, 130 (107684): 1- 12
|
85 |
DU W, REN Z, WANG J, et al A surrogate-assisted evolutionary algorithm with knowledge transfer for expensive multi-modal optimization problems[J]. Information Sciences, 2024, 652 (119745): 1- 24
|
86 |
LI K, CHEN R, YAO X A data-driven evolutionary transfer optimization for expensive problems in dynamic environments[J]. IEEE Transactions on Evolutionary Computation, 2024, 28 (5): 1396- 1411
|
87 |
LI G, WANG Z, GONG M Expensive optimization via surrogate-assisted and model-free evolutionary optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 53 (5): 2758- 2769
|
88 |
CUI M, LI L, ZHOU M, et al Surrogate-assisted autoencoder-embedded evolutionary optimization algorithm to solve high-dimensional expensive problems[J]. IEEE Transactions on Evolutionary Computation, 2021, 26 (4): 676- 689
|
89 |
ZHAO X, JIA X, ZHANG T, et al A supervised surrogate-assisted evolutionary algorithm for complex optimization problems[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1- 14
|
90 |
LIU Q, JIN Y, HEIDERICH M, et al Surrogate-assisted evolutionary optimization of expensive many-objective irregular problems[J]. Knowledge-based Systems, 2022, 240 (108197): 1- 16
|
91 |
SHEN J, WANG P, DONG H, et al Surrogate-assisted evolutionary algorithm with decomposition-based local learning for high-dimensional multi-objective optimization[J]. Expert Systems with Applications, 2024, 240 (122575): 1- 15
|
92 |
YUAN Y, XU H, WANG B, et al Balancing convergence and diversity in decomposition-based many-objective optimizers[J]. IEEE Transactions on Evolutionary Computation, 2015, 20 (2): 180- 198
|
93 |
SONG Z, WANG H, HE C, et al. A Kriging-assisted two-archive evolutionary algorithm for expensive many-objective optimization [J]. IEEE Transactions on Evolutionary Computation , 2021, 25(6): 1013-1027.
|
94 |
LV Z, WANG L, HAN Z, et al Surrogate-assisted particle swarm optimization algorithm with Pareto active learning for expensive multi-objective optimization[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6 (3): 838- 849
doi: 10.1109/JAS.2019.1911450
|
95 |
DEB K, HUSSEIN R, ROY P, et al A taxonomy for metamodeling frameworks for evolutionary multi-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2018, 23 (1): 104- 116
|
96 |
LUO J, GUPTA A, ONG Y, et al Evolutionary optimization of expensive multi-objective problems with co-sub-Pareto front Gaussian process surrogates[J]. IEEE Transactions on Cybernetics, 2018, 49 (5): 1708- 1721
|
97 |
KNOWLES J ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multi-objective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2006, 10 (1): 50- 66
doi: 10.1109/TEVC.2005.851274
|
98 |
TANG J, WANG H, XIONG L Surrogate-assisted multi-objective optimization via knee-oriented Pareto front estimation[J]. Swarm and Evolutionary Computation, 2023, 77 (101252): 1- 15
|
99 |
SHEN J, WANG P, TIAN Y, et al A dual surrogate assisted evolutionary algorithm based on parallel search for expensive multi/many-objective optimization[J]. Applied Soft Computing, 2023, 148 (110879): 1- 17
|
100 |
HABIB A, SINGH H K, CHUGH T, et al A multiple surrogate assisted decomposition-based evolutionary algorithm for expensive multi/many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2019, 23 (6): 1000- 1014
doi: 10.1109/TEVC.2019.2899030
|
101 |
GUO D, JIN Y, DING J, et al Heterogeneous ensemble-based infill criterion for evolutionary multi-objective optimization of expensive problems[J]. IEEE Transactions on Cybernetics, 2018, 49 (3): 1012- 1025
|
102 |
YANG Q, ZHAN Z, LIU X, et al Grid classification-based surrogate-assisted particle swarm optimization for expensive multi-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2024, 28 (6): 1867- 1881
|
103 |
PAN L, HE C, TIAN Y, et al A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2018, 23 (1): 74- 88
|
104 |
LI J, WANG P, DONG H, et al A classification surrogate-assisted multi-objective evolutionary algorithm for expensive optimization[J]. Knowledge-based Systems, 2022, 242 (108416): 1- 23
|
105 |
WANG R, ZHOU Y, CHEN H, et al A surrogate-assisted many-objective evolutionary algorithm using multi-classification and coevolution for expensive optimization problems[J]. IEEE Access, 2021, 9: 159160- 159174
doi: 10.1109/ACCESS.2021.3131587
|
106 |
HE C, HUANG S, CHENG R, et al Evolutionary multi-objective optimization driven by generative adversarial networks (GANs)[J]. IEEE Transactions on Cybernetics, 2020, 51 (6): 3129- 3142
|
107 |
HAO H, ZHOU A, ZHANG H. An approximated domination relationship based on binary classifiers for evolutionary multi-objective optimization [C]// IEEE Congress on Evolutionary Computation . Kraków: IEEE, 2021: 2427-2434.
|
108 |
YUAN Y, BANZHAF W Expensive multi-objective evolutionary optimization assisted by dominance prediction[J]. IEEE Transactions on Evolutionary Computation, 2021, 26 (1): 159- 173
|
109 |
HAO H, ZHOU A, QIAN H, et al Expensive multi-objective optimization by relation learning and prediction[J]. IEEE Transactions on Evolutionary Computation, 2022, 26 (5): 1157- 1170
doi: 10.1109/TEVC.2022.3152582
|
110 |
YANG C, DING J, JIN Y, et al Offline data-driven multi-objective optimization: knowledge transfer between surrogates and generation of final solutions[J]. IEEE Transactions on Evolutionary Computation, 2019, 24 (3): 409- 423
|
111 |
TIAN Y, HU J, HE C, et al A pairwise comparison based surrogate-assisted evolutionary algorithm for expensive multi-objective optimization[J]. Swarm and Evolutionary Computation, 2023, 80 (101323): 1- 12
|
112 |
TIAN Y, SI L, ZHANG X, et al Local model-based Pareto front estimation for multi-objective optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 53 (1): 623- 634
|
113 |
ZHANG X, YU G, JIN Y, et al An adaptive Gaussian process based manifold transfer learning to expensive dynamic multi-objective optimization[J]. Neurocomputing, 2023, 538 (126212): 1- 14
|
114 |
WANG X, JIN Y, SCHMITT S, et al Transfer learning based co-surrogate assisted evolutionary bi-objective optimization for objectives with non-uniform evaluation times[J]. Evolutionary Computation, 2022, 30 (2): 221- 251
|
115 |
WU X, LIN Q, LIN W, et al A Kriging model-based evolutionary algorithm with support vector machine for dynamic multi-modal optimization[J]. Engineering Applications of Artificial Intelligence, 2023, 122 (106039): 1- 18
|
116 |
SONG Z, WANG H, JIN Y A surrogate-assisted evolutionary framework with regions of interests-based data selection for expensive constrained optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53 (10): 6268- 6280
doi: 10.1109/TSMC.2023.3281822
|
117 |
XU J, JIN Y, DU W A federated data-driven evolutionary algorithm for expensive multi-/many-objective optimization[J]. Complex and Intelligent Systems, 2021, 7 (6): 3093- 3109
doi: 10.1007/s40747-021-00506-7
|
118 |
ZHAN D, CHENG Y, LIU J Expected improvement matrix-based infill criteria for expensive multi-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21 (6): 956- 975
doi: 10.1109/TEVC.2017.2697503
|
119 |
YANG K, AFFENZELLER M, DONG G A parallel technique for multi-objective Bayesian global optimization: using a batch selection of probability of improvement[J]. Swarm and Evolutionary Computation, 2022, 75 (101183): 1- 18
|
120 |
SHU L, JIANG P, SHAO X, et al A new multi-objective Bayesian optimization formulation with the acquisition function for convergence and diversity[J]. Journal of Mechanical Design, 2020, 142 (9): 1- 38
|
121 |
CAI X, ZOU T, GAO L Surrogate-assisted operator-repeated evolutionary algorithm for computationally expensive multi-objective problems[J]. Applied Soft Computing, 2023, 147 (110785): 1- 19
|
122 |
LI F, SHEN W, CAI X, et al A fast surrogate-assisted particle swarm optimization algorithm for computationally expensive problems[J]. Applied Soft Computing, 2020, 92 (106303): 1- 18
|
123 |
LI F, CAI X, GAO L Ensemble of surrogates assisted particle swarm optimization of medium scale expensive problems[J]. Applied Soft Computing, 2019, 74: 291- 305
doi: 10.1016/j.asoc.2018.10.037
|
124 |
TIAN J, TAN Y, ZENG J, et al Multi-objective infill criterion driven Gaussian process-assisted particle swarm optimization of high-dimensional expensive problems[J]. IEEE Transactions on Evolutionary Computation, 2018, 23 (3): 459- 472
|
125 |
LI G, XIE L, WANG Z, et al Evolutionary algorithm with individual-distribution search strategy and regression-classification surrogates for expensive optimization[J]. Information Sciences, 2023, 634: 423- 442
doi: 10.1016/j.ins.2023.03.101
|
126 |
WANG X, GAO L, LI X Multiple surrogates and offspring-assisted differential evolution for high-dimensional expensive problems[J]. Information Sciences, 2022, 592: 174- 191
doi: 10.1016/j.ins.2022.01.052
|
127 |
YU H, TAN Y, SUN C, et al A generation-based optimal restart strategy for surrogate-assisted social learning particle swarm optimization[J]. Knowledge-based Systems, 2019, 163: 14- 25
doi: 10.1016/j.knosys.2018.08.010
|
128 |
LI F, GAO L, SHEN W, et al Surrogate-assisted multi-objective evolutionary optimization with a multi-offspring method and two infill criteria[J]. Swarm and Evolutionary Computation, 2023, 79 (101315): 1- 21
|
129 |
CAI X, GAO L, LI F Sequential approximation optimization assisted particle swarm optimization for expensive problems[J]. Applied Soft Computing, 2019, 83 (105659): 1- 16
|
130 |
CHUGH T, JIN Y, MIETTINEN K, et al A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2018, 22 (1): 129- 142
doi: 10.1109/TEVC.2016.2622301
|
131 |
ZHOU Z, ONG Y, NAIR P, et al Combining global and local surrogate models to accelerate evolutionary optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2006, 37 (1): 66- 76
|
132 |
TIAN Y, LU C, ZHANG X, et al Solving large-scale multi-objective optimization problems with sparse optimal solutions via unsupervised neural networks[J]. IEEE Transactions on Cybernetics, 2020, 51 (6): 3115- 3128
|
133 |
LIU S, YAN X, JIN Y. End-to-end Pareto set prediction with graph neural networks for multi-objective facility location [C]// International Conference on Evolutionary Multi-Criterion Optimization. Switzerland: Springer, 2023: 147-161.
|
134 |
LIU D, BAI T, DENG M, et al A parallel approximate evaluation-based model for multi-objective operation optimization of reservoir group[J]. Swarm and Evolutionary Computation, 2023, 78 (101288): 1- 18
|
135 |
LIANG J, MEYERSON E, HODJAT B, et al. Evolutionary neural autoML for deep learning [C]// Proceedings of the Genetic and Evolutionary Computation Conference . New York: ACM, 2019: 401-409.
|
136 |
WOLPERT D, MACREADY W No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1 (1): 67- 82
doi: 10.1109/4235.585893
|
137 |
YANG Z, QIU H, GAO L, et al A general framework of surrogate-assisted evolutionary algorithms for solving computationally expensive constrained optimization problems[J]. Information Sciences, 2023, 619: 491- 508
doi: 10.1016/j.ins.2022.11.021
|
138 |
TIAN Y, PENG S, RODEMANN T, et al. Automated selection of evolutionary multi-objective optimization algorithms [C]// 2019 IEEE Symposium Series on Computational Intelligence . Xiamen: IEEE, 2019: 3225-3232.
|
139 |
WANG J L, ZHANG L M, ZHANG K, et al Multi-surrogate framework with an adaptive selection mechanism for production optimization[J]. Petroleum Science, 2024, 21 (1): 366- 383
doi: 10.1016/j.petsci.2023.08.028
|
140 |
DAI R, ZHENG H, JIE J, et al. Automatic particle swarm optimizer based on reinforcement learning [C]// International Conference on Bio-Inspired Computing: Theories and Applications. Singapore: Springer, 2022, 1565: 317-331.
|
141 |
TIAN Y, LI X, MA H, et al Deep reinforcement learning based adaptive operator selection for evolutionary multi-objective optimization[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 7 (4): 1051- 1064
|
142 |
CHEN H, LI W, CUI W Surrogate-assisted evolutionary algorithm with hierarchical surrogate technique and adaptive infill strategy[J]. Expert Systems with Applications, 2023, 232 (120826): 1- 19
|
143 |
YOUNIS A, DONG Z Adaptive surrogate assisted multi-objective optimization approach for highly nonlinear and complex engineering design problems[J]. Applied Soft Computing, 2023, 150 (111065): 1- 12
|
144 |
DEB K, ROY P C, HUSSEIN R Surrogate modeling approaches for multi-objective optimization: methods, taxonomy, and results[J]. Mathematical and Computational Applications, 2020, 26 (1): 5
doi: 10.3390/mca26010005
|
145 |
WU M, WANG L, XU J, et al Adaptive surrogate-assisted multi-objective evolutionary algorithm using an efficient infill technique[J]. Swarm and Evolutionary Computation, 2022, 75 (101170): 1- 18
|
146 |
WU M, XU J, WANG L, et al Adaptive multi-surrogate and module-based optimization algorithm for high-dimensional and computationally expensive problems[J]. Information Sciences, 2023, 645 (119308): 1- 25
|
147 |
LU H, LIU Y, CHENG S, et al Adaptive online data-driven closed-loop parameter control strategy for swarm intelligence algorithm[J]. Information Sciences, 2020, 536: 25- 52
doi: 10.1016/j.ins.2020.05.016
|
148 |
LIU Y, LU H, CHENG S, et al. An adaptive online parameter control algorithm for particle swarm optimization based on reinforcement learning [C]// 2019 IEEE Congress on Evolutionary Computation . Wellington: IEEE, 2019: 815-822.
|
149 |
GAO H, ZHANG Q, BU X, et al Quadruple parameter adaptation growth optimizer with integrated distribution, confrontation, and balance features for optimization[J]. Expert Systems with Applications, 2024, 235 (121218): 1- 27
|
150 |
CHEN J, LUO F, LI G, et al Batch Bayesian optimization with adaptive batch acquisition functions via multi-objective optimization[J]. Swarm and Evolutionary Computation, 2023, 79 (101293): 1- 14
|
151 |
YANG Z, QIU H, GAO L, et al Surrogate-assisted MOEA/D for expensive constrained multi-objective optimization[J]. Information Sciences, 2023, 639 (119016): 1- 18
|
152 |
WU S, ZHAN Z, ZHANG J SAFE: scale-adaptive fitness evaluation method for expensive optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2021, 25 (3): 478- 491
doi: 10.1109/TEVC.2021.3051608
|
153 |
JI X, ZHANG Y, GONG D, et al Dual-surrogate-assisted cooperative particle swarm optimization for expensive multi-modal problems[J]. IEEE Transactions on Evolutionary Computation, 2021, 25 (4): 794- 808
doi: 10.1109/TEVC.2021.3064835
|
154 |
DONG J, LI Q, DENG L Fast multi-objective optimization of multi-parameter antenna structures based on improved MOEA/D with surrogate-assisted model[J]. AEU-International Journal of Electronics and Communications, 2017, 72: 192- 199
|
155 |
FU K, CAI X, YUAN B, et al An efficient surrogate assisted particle swarm optimization for antenna synthesis[J]. IEEE Transactions on Antennas and Propagation, 2022, 70 (7): 4977- 4984
doi: 10.1109/TAP.2022.3153080
|
156 |
LIU Y, YANG Z, XU D, et al A Kriging-assisted double population differential evolution for mixed-integer expensive constrained optimization problems with mixed constraints[J]. Swarm and Evolutionary Computation, 2024, 84 (101428): 1- 19
|
157 |
LIU Y, YANG Z, XU D, et al A surrogate-assisted differential evolution for expensive constrained optimization problems involving mixed-integer variables[J]. Information Sciences, 2023, 622: 282- 302
doi: 10.1016/j.ins.2022.11.167
|
158 |
HE C, CHENG R, JIN Y, et al. Surrogate-assisted expensive many-objective optimization by model fusion [C]// 2019 IEEE Congress on Evolutionary Computation . Wellington: IEEE, 2019: 1672-1679.
|
159 |
PAN J, LIANG Q, CHU S, et al A multi-strategy surrogate-assisted competitive swarm optimizer for expensive optimization problems[J]. Applied Soft Computing, 2023, 147 (110733): 1- 21
|
160 |
LIU Z, NISHI T Surrogate-assisted evolutionary optimization for perishable inventory management in multi-echelon distribution systems[J]. Expert Systems with Applications, 2024, 238 (122179): 1- 20
|
161 |
HAN H, ZHANG L, QIAO J Dynamic optimal control for wastewater treatment process under multiple operating conditions[J]. IEEE Transactions on Automation Science and Engineering, 2022, 20 (3): 1907- 1919
|
162 |
BAO Z, CHEN L, QIU K A surrogate-assisted heuristic approach for the joint optimization of resource allocation and scheduling of an aircraft final assembly line[J]. Journal of Manufacturing Systems, 2023, 70: 99- 112
doi: 10.1016/j.jmsy.2023.07.003
|
163 |
SONG D, SHEN X, GAO Y, et al Application of surrogate-assisted global optimization algorithm with dimension-reduction in power optimization of floating offshore wind farm[J]. Applied Energy, 2023, 351 (121891): 1- 14
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|