Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (2): 227-248    DOI: 10.3785/j.issn.1008-973X.2025.02.002
计算机技术     
数据驱动的智能计算及其应用研究综述
戴瑞1(),介婧2,王万良1,*(),叶倩琳1,吴菲1
1. 浙江工业大学 计算机科学与技术学院,浙江 杭州 310023
2. 浙江科技大学 自动化与电气工程学院,浙江 杭州 310023
Review of data-driven intelligent computation and its application
Rui DAI1(),Jing JIE2,Wanliang WANG1,*(),Qianlin YE1,Fei WU1
1. College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
2. School of Automation and Electrical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
 全文: PDF(1476 KB)   HTML
摘要:

为了有效地解决实际应用中涌现出的越来越复杂的昂贵优化问题(EOPs),全面综述了能够有效降低计算成本和提高求解效率的最新数据驱动智能计算(DDICs)方法. 从算法和应用2个层面系统地概述了最新DDICs的研究成果,归纳和总结了广义DDICs和自适应DDICs中的不同技术点,剖析了DDICs在解决EOPs时所面临的挑战与机遇. 提出未来研究的潜在发展趋势,如进行更深层次的理论分析、探索新颖的学习范式及其在更多不同实际领域中的应用等,旨在为研究者提供有针对性的参考与方向,激发创新思路,从而更有效地应对实际应用中的各种复杂EOPs.

关键词: 数据驱动优化代理辅助优化智能计算自适应学习昂贵优化问题    
Abstract:

State-of-the-art data-driven intelligent computations (DDICs) were comprehensively reviewed in order to effectively solve the increasingly complex and expensive optimization problems (EOPs) emerging in real-world applications, which can effectively reduce computing costs and improve solutions. The latest research achievements of DDICs were outlined from both algorithm and application perspectives. Various technical points in generalized DDICs and adaptive DDICs were summarized and categorized. The challenges and opportunities faced by DDICs in solving EOPs were analyzed. Future research potential trends were proposed, such as conducting deeper theoretical analyses, exploring novel learning paradigms, applying these methods in various practical fields, and so on. This aims to provide targeted references and directions for researchers, stimulating innovative ideas to more effectively address the complex EOPs encountered in real-world applications.

Key words: data-driven optimization    surrogate-assisted optimization    intelligent computation    adaptive learning    expensive optimization problem
收稿日期: 2024-02-23 出版日期: 2025-02-11
CLC:  TP 301  
基金资助: 国家自然科学基金资助项目(61873240);浙江大学CAD&CG国家重点实验室开放课题资助项目(A2210);浙江省重点研究发展计划资助项目(2023C03189,2023C01168).
通讯作者: 王万良     E-mail: zjudr@zjut.edu.cn;zjutwwl@zjut.edu.cn
作者简介: 戴瑞(1996—),女,博士生,从事数据驱动优化算法的研究. orcid.org/0000-0001-9905-9798. E-mail:zjudr@zjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
戴瑞
介婧
王万良
叶倩琳
吴菲

引用本文:

戴瑞,介婧,王万良,叶倩琳,吴菲. 数据驱动的智能计算及其应用研究综述[J]. 浙江大学学报(工学版), 2025, 59(2): 227-248.

Rui DAI,Jing JIE,Wanliang WANG,Qianlin YE,Fei WU. Review of data-driven intelligent computation and its application. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 227-248.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.02.002        https://www.zjujournals.com/eng/CN/Y2025/V59/I2/227

图 1  ICs的总流程框图
图 2  DDICs的广义框架
元模型应用范围特点
PR/RSM[10]连续问题适合低阶非线性和小规模EOPs;不需要指定参数
GP/Kriging[29]连续问题只适合中低维EOPs;能够提供预测的不确定性
ANN[30]连续问题评估精度高,但需要人为大量试错;训练时间长;鲁棒性差
RBFN[31]连续问题适合中高维EOPs;具有较高的非线性逼近能力;鲁棒性好;可伸缩性强
RF[32]连续问题和离散问题需要调整的参数少;评估精度有待提高
KNN[33]连续问题和离散问题适合高维和多模态EOPs;对异常值不敏感;计算量大;不适合数据不平衡的问题
SVM[34]连续问题和离散问题适合中低维EOPs;鲁棒性差
CNN[35]连续问题和离散问题适合大规模多目标EOPs;能够实现模型并行
GAN[36]离散问题作为分类器,将候选解分为真实和虚假数据,适合大规模的稀疏EOPs;结构复杂,可能存在过拟合问题
EDN[37]连续问题适合高维EOPs;具有很强的可伸缩性;能够提供不确定性
表 1  几种流行的元模型比较与分析
图 3  基于bagging方法的集成学习示意图
测试函数维度CC-DDEADDEA-SEBDDEA-LDGSRK-DDEATT-DDEAMS-DDEO
Ackley1005.78(0.453)6.67(0.534) (+)5.67(0.256) (=)5.32(0.248) (-)4.79(0.213) (-)11.8(1.01) (+)
5004.89(0.471)16.3(0.462) (+)15.7(0.371) (+)7.49(0.278) (+)7.44(0.267) (+)18.1(0.522) (+)
10004.5(0.345)18.5(0.282) (+)18.7(0.191) (+)8.43(0.222) (+)8.21(0.265) (+)18.2(0.567) (+)
Ellipsoid10072.1(15.0)2.53×102(44.3) (+)1.46×102(37.1) (+)83.1(15.9) (+)64.7(12.7) (=)1.27×103(3.41×102) (+)
5001.02×103(2.52×102)1.55×105(2.12×104) (+)1.04×105(1.03×104) (+)8.56×103(6.73×102) (+)8.39×103(9.81×102) (+)2.32×105(4.36×104) (+)
10002.88×103 (6.01×102)9.49×105(9.34×104) (+)7.78×105(5.57×104) (+)4.92×104(5.33×103) (+)4.66×104(3.89×103) (+)7.29×105(5.27×104) (+)
Griewank1001.01(2.55×10-2)17.7(4.27) (+)10.2(1.88) (+)4.2(0.76) (+)4.5(0.554) (+)57.4(9.56) (+)
5001.78(0.273)1.84×103(3.05×102) (+)1.55×103(1.47×102) (+)1.25×102(12.0) (+)1.21×102(12.2) (+)2.47×103(96.6) (+)
10003.71(0.634)6.41×103(6.32×102) (+)5.47×103(4.71×102) (+)3.33×102(36.1) (+)3.31×102(34.9) (+)4.40×103(1.19×102) (+)
Rastrigin1005.39×102(1.01×102)6.81×102 (1.14×102) (+)4.56×102(66.4) (-)4.32×102(53.6) (-)3.11×102(34.6) (-)1.15×103(3.53×102) (+)
5001.74×103(4.22×102)5.56×103(1.69×102) (+)5.45×103(1.39×102) (+)3.78×103(2.37×102) (+)3.89×103(2.09×102) (+)6.04×103(2.45×102) (+)
10002.65×103(4.38×102)1.20×104(2.49×102) (+)1.17×104(2.17×102) (+)8.73×103(3.02×102) (+)8.78×103(2.79×102) (+)1.19×104(3.24×102) (+)
Rosenbrock1003.23×102(41.4)1.78×102(24.3) (?)1.56×102(11.7) (?)2.42×102(33.5) (?)1.43×102(8.53) (?)1.18×103(6.22×102) (+)
5007.77×102(57.4)1.56×104(3.54×103) (+)9.78×103(1.40×103) (+)1.11×103(65.8) (+)1.05×103(47.0) (+)2.44×104(3.47×103) (+)
10001.32×103(87.3)6.17×104(7.01×103) (+)4.27×104(3.29×103) (+)2.36×103(1.74×102) (+)2.28×103(1.48×102) (+)4.52×104(3.04×103) (+)
+/=/?NA14/0/112/1/212/0/311/1/315/0/0
表 2  几种最新DDICs在5个基准测试函数上的比较结果
图 4  多群搜索过程的示意图
图 5  协同优化搜索中的决策变量分组示意图
图 6  分层代理模型的搜索过程示意图
图 7  基于MFEA的多任务信息共享框架
图 8  基于分类的3种不同方式
测试函数GCS-PSOREMOθ-DAE-DPABMOEACSEAHeEMOEAEDNMOEAKRVEAParEGOKTA2
DTLZ11.430×103
(7.70×101)
1.260×103
(9.63×101)(?)
1.462×103
(8.67×101)(=)
1.440×103
(7.13×101)(=)
1.299×103
(2.72×101)(?)
1.471×103
(6.34×100)(=)
1.502×103
(3.04×101)(+)
1.395×103
(1.55×102)(?)
1.455×103
(9.87×101)(=)
8.246×102
(2.40×100)(?)
DTLZ23.299×10-1
(5.82×10-3)
2.765×100
(2.82×101)(+)
3.563×100
(2.79×10?1)(+)
3.475×100
(2.08×10?1)(+)
2.948×100
(4.99×10?1)(+)
8.328×10?1
(2.26×10?2)(+)
3.154×100
(1.42×10?1)(+)
3.421×100
(4.23×10?2)(+)
3.203×100
(1.98×10?1)(+)
6.644×10?1
(1.31×10?1)(+)
DTLZ34.441×103
(1.97×102)
3.972×103
(2.90×102)(?)
4.409×103
(2.24×102)(=)
4.472×103
(1.21×102)(=)
3.940×103
(1.99×102)(=)
4.600×103
(1.87×102)(=)
4.639×103
(4.84×100)(=)
4.342×103
(2.36×101)(=)
4.568×103
(5.63×101)(=)
2.737×103
(2.45×100)(?)
DTLZ41.258×100
(1.14×10?1)
2.579×100
(2.32×10?1)(+)
3.544×100
(3.80×10?1)(+)
3.457×100
(1.33×10?1)(+)
2.526×100
(8.60×10?2)(+)
1.547×100
(7.89×10?2)(=)
3.595×100
(7.98×10?2)(+)
3.181×100
(1.12×10?1)(+)
3.666×100
(1.03×10?1)(+)
1.447×100
(9.39×10-3)(+)
DTLZ52.372×10-1
(4.83×10?2)
2.631×100
(2.58×10?1)(+)
2.969×100
(3.43×10?1)(+)
3.345×100
(1.61×10?2)(+)
2.739×100
(3.83×10-3)(+)
8.551×10?1
(3.75×10?2)(+)
3.167×100
(1.89×10?2)(+)
3.508×100
(6.06×10?2)(+)
3.248×100
(1.90×10?1)(+)
5.355×10?1
(4.92×10?2)(+)
DTLZ64.456×101
(1.38×10?1)
3.258×101
(1.45×10-2)(?)
4.852×101
(3.51×10?2)(+)
5.092×101
(2.12×10?1)(+)
4.835×101
(3.59×10?1)(+)
5.102×101
(7.25×10?2)(+)
5.005×101
(7.60×10?1)(+)
4.579×101
(7.54×10?1)(=)
4.729×101
(3.19×10?1)(+)
3.333×101
(1.97×100)(?)
DTLZ74.912×10-1
(6.41×10-3)
6.575×101
(5.83×10?1)(+)
7.439×101
(6.33×10?1)(+)
9.862×100
(1.41×10?1)(+)
7.380×100
(7.45×10?1)(+)
8.263×100
(4.03×10?1)(+)
4.312×100
(1.93×10?1)(+)
8.265×10?1
(5.98×10?1)(+)
2.069×100
(5.50×10?1)(+)
6.206×10?1
(3.28×10?1)(+)
WFG12.182×100
(3.97×10?2)
1.797×100
(6.10×10?2)(?)
1.804×100
(8.26×10?2)(?)
2.409×100
(7.57×10?2)(+)
1.668×100
(1.52×10?2)(?)
2.355×100
(5.03×10?2)(+)
1.659×100
(3.49×10?2)(?)
1.643×100
(4.82×10-3)(?)
1.687×100
(4.98×10?2)(?)
2.056×100
(1.13×10?2)(?)
WFG25.132×10-1
(4.74×10?2)
7.437×10?1
(2.64×10?2)(+)
8.407×10?1
(3.95×10?2)(+)
9.977×10?1
(5.90×10?2)(+)
1.0630×100
(2.12×10-2)(+)
8.844×10?1
(1.08×10?1)(+)
1.024×100
(5.08×10?2)(+)
9.647×10?1
(9.93×10?2)(+)
9.064×10?1
(3.59×10?2)(+)
1.174×100
(3.54×10?2)(+)
WFG34.694×10-1
(3.75×10-3)
7.612×10?1
(8.24×10?3)(+)
8.187×10?1
(2.28×10?2)(+)
7.756×10?1
(1.45×10?2)(+)
8.005×10?1
(6.48×10?3)(+)
5.077×10?1
(1.28×10?2)(+)
7.875×10?1
(9.31×10?3)(+)
7.871×10?1
(1.40×10?2)(+)
7.759×10?1
(7.10×10?3)(+)
8.091×10?1
(1.12×10?1)(+)
WFG44.479×10-1
(2.87×10?2)
5.153×10?1
(1.59×10?2)(+)
5.332×10?1
(1.19×10?2)(+)
8.674×10?1
(5.17×10?2)(+)
7.384×10?1
(1.21×10?1)(+)
7.320×10?1
(4.94×10?2)(+)
6.466×10?1
(1.54×10-3)(+)
8.060×10?1
(2.65×10?2)(+)
7.955×10?1
(7.37×10?2)(+)
1.192×100
(1.86×10?1)(+)
WFG57.514×10?1
(4.15×10?3)
7.118×10-1
(1.08×10?2)(?)
8.667×10?1
(2.52×10?2)(+)
8.680×10?1
(9.44×10?3)(+)
8.421×10?1
(8.99×10-3)(+)
8.499×10?1
(1.92×10?2)(+)
7.966×10?1
(1.23×10?2)(+)
8.567×10?1
(3.36×10?2)(+)
8.694×10?1
(4.78×10?2)(+)
1.074×100
(6.19×10?2)(+)
WFG67.067×10-1
(5.15×10-3)
8.849×10?1
(1.80×10?2)(+)
1.005×100
(1.91×10?2)(+)
1.020×100
(2.22×10?2)(+)
9.376×10?1
(2.18×10?2)(+)
9.552×10?1
(6.49×10?2)(+)
9.506×10?1
(9.03×10?3)(+)
1.022×100
(2.26×10?2)(+)
1.050×100
(1.04×10?2)(+)
1.177×100
(1.67×10?2)(+)
WFG74.891×10-1
(2.21×10-3)
6.705×10?1
(1.39×10?2)(+)
6.744×10?1
(1.69×10?2)(+)
6.684×10?1
(1.13×10?2)(+)
7.467×10?1
(7.27×10?2)(+)
6.378×10?1
(1.30×10?2)(+)
6.788×10?1
(4.60×10?3)(+)
6.911×10?1
(5.11×10?3)(+)
7.013×10?1
(4.11×10?2)(+)
6.016×10?1
(1.29×10?2)(+)
WFG85.743×10-1
(3.63×10-3)
7.288×10?1
(1.13×10?2)(+)
7.220×10?1
(1.21×10?2)(+)
7.415×10?1
(1.66×10?2)(+)
7.355×10?1
(1.59×10?2)(+)
6.903×10?1
(2.04×10?2)(+)
7.308×10?1
(8.46×10?3)(+)
7.243×10?1
(1.53×10?2)(+)
7.916×10?1
(2.12×10?2)(+)
5.781×10?1
(2.27×10?2)(=)
WFG96.573×10-1
(9.88×10-3)
7.288×10?1
(1.13×10?2)(+)
9.203×10?1
(1.48×10?2)(+)
9.387×10?1
(2.54×10?2)(+)
9.114×10?1
(2.92×10?2)(+)
9.022×10?1
(3.36×10?2)(+)
9.515×10?1
(1.61×10?2)(+)
9.380×10?1
(1.69×10?2)(+)
9.708×10?1
(3.85×10?2)(+)
6.672×10?1
(6.40×10?2)(=)
+/=/?NA11/0/513/2/114/2/013/1/213/3/014/1/112/2/213/2/110/2/4
表 3  10个最新多目标DDICs在DTLZ和WFG测试问题上获得IGD的均值和标准差
图 9  在线DDICs的优化框架
图 10  自适应DDICs的实现过程
图 11  优化算子或代理模型的自适应选择过程
序号应用领域问题算法目标约束优化算子代理模型
1创伤系统设计离散SA-NSGA-II[10]NSGA-IIPR
1创伤系统设计离散RF-CMOCO[54]不等式MOEARF
2建筑节能设计连续DSCPSO-EMM[153]PSORBFN
3天线设计连续improved MOEA/D[154]不等式MOEA/DBPNN
3天线设计连续SAEA-HAS[142]GARBFN
3天线设计连续APSO-mixP[155]PSOKriging
4张力/压缩弹簧设计连续MS-MTGAwA[84]等式GARBFN
5桁架结构设计离散KDPDE[156]不等式+等式DEKriging
5桁架结构设计离散SADE-MI[157]不等式DERBFN
6翼型设计离散SA-MPSO[59]PSORBFN
6翼型设计离散SA-TSDE[48]不等式DERBFN
6翼型设计离散SAEA-DBLL[91]RVEARBFN
6翼型设计离散DSAEA-PS[99]NSGA-IIKriging+GP
6翼型设计离散SAOR-MOEA[121]MOEARBFN
7车辆设计连续K-CSEA[158]RVEAKriging
7车辆设计连续AMOS[143]不等式MOEAPR+Kriging+RBFN
8减速机设计连续SACOS[159]不等式CSORBFN
9船舶设计连续eToSA-DE[53]不等式DEGP
10供应链系统优化连续CDE[160]DERF
11污水处理过程优化连续RLPSO[30]不等式PSOANN
11污水处理过程优化连续DOC[161]不等式MOPSOFNN
12车间与资源调度连续PAEM-LSTM[134]不等式MOEALSTM
12车间与资源调度离散SACS[33]不等式+等式ACOKNN
12车间与资源调度离散RATSJOP[162]不等式+等式GARF
13神经网络架构搜索离散SHEALED[24]DE+GARBFN
13神经网络架构搜索离散SHCHO[69]DECNN
13神经网络架构搜索混合SHEDA[25]EDAKriging
14能源与电力系统连续SAMTO[77]MFEARBFN
14能源与电力系统连续SAFDR[163]PSOGP
15油藏产量连续IDRCEA[125]DERBFN+KNN
16无线传感器系统连续SAPPE[164]PPERBFN
17自动团队组装游戏离散DDEA-DLS[57]等式DELSTM
18交通信号配时离散CL-DDEA[50]等式DE孪生RBFN
表 4  DDICs在不同领域中的实际应用
序号竞赛名称细节描述链接
1IEEE CEC’2019 Competition on Evolutionary Computation来自真实世界应用的7个基准多目标优化问题,其中评估成本很高https://github.com/HandingWang/DDMOP
2IEEE CEC’2020 Competition at IEEE world congress on computational intelligence来自气动优化和软件配置调整的2个现实应用程序的8个基准问题https://github.com/HandingWang/DDEOWCCI2020
3IEEE CEC’2021 Competition at IEEE congress on evolutionary computation不同场景下机器人群体模型参数优化的6个问题https://handingwang.github.io/DDEOCEC2021/
4IEEE CEC’2022 Competition on Heat Pipe-Constrained Component Layout Optimization设置了5个优化尺度不同的热管约束元件布局优化(HCLO)问题https://idrl-lab.github.io/CEC2022-HCLO/
5IEEE CEC’2023 Competition on Competition on Multiobjective Neural Architecture Search提供了端到端的流水线平台,称为EvoXBtch,用于生成NAS基准测试套件,涵盖了7种搜索空间、2种神经网络架构、2种广泛研究的数据集、6种硬件以及多达6种类型的优化目标https://www.emigroup.tech/index.php/news/ieee-cec2023-competition-on-multiobjective-neural-architecture-search/
6IEEE CEC’2023 Competition on Large-scale Continuous Optimization for Non-contact Measurement分别从多导体系统的非接触电压测量(NVM)和非接触电流测量(NIM)2个任务中精心选择了6个大规模优化问题https://github.com/ChengHust/IEEE-CEC-2023-Competition
7IEEE CEC’2024 Competition on "Super Large-scale Multiobjective Optimization for Status Assessment of Measuring Equipment"来自广域电力系统中仪表变压器的3个在线状态评估(即,ETT问题),这3个大规模多目标优化问题的决策变量分别为
100万、1000万和1亿
https://github.com/ChengHust/IEEE-CEC-2024-Competition
表 5  近6年基于实际应用EOPs的竞赛
1 CHENG L, TANG Q, ZHANG L, et al Multi-objective Q-learning-based hyper-heuristic with bi-criteria selection for energy-aware mixed shop scheduling[J]. Swarm and Evolutionary Computation, 2022, 69 (100985): 1- 16
2 CHANG J, LI Z, HUANG Y, et al Multi-objective optimization of a novel combined cooling, dehumidification and power system using improved M-PSO algorithm[J]. Energy, 2022, 239 (122487): 1- 16
3 DUAN C, ZHANG P. Path planning for welding robot based on ant colony optimization algorithm [C]// 3rd International Conference on Artificial Intelligence and Advanced Manufacture . Manchester: IEEE, 2021: 371-374.
4 PRITHI S, SUMATHI S Automata based hybrid PSO–GWO algorithm for secured energy efficient optimal routing in wireless sensor network[J]. Wireless Personal Communications, 2021, 2 (117): 1- 15
5 EMMERICH M, GIOTIS A, OZDEMIR M, et al. Metamodel-assisted evolution strategies [C]// International Conference on Parallel Problem Solving from Nature . Heidelberg: Springer, 2002: 361–370.
6 JIN Y Surrogate-assisted evolutionary computation: recent advances and future challenges[J]. Swarm and Evolutionary Computation, 2011, 1 (2): 61- 70
doi: 10.1016/j.swevo.2011.05.001
7 JIN Y, WANG H, CHUGH T, et al Data-driven evolutionary optimization: an overview and case studies[J]. IEEE Transactions on Evolutionary Computation, 2019, 23 (3): 442- 458
doi: 10.1109/TEVC.2018.2869001
8 WANG H, JIN Y, SUN C, et al Offline data-driven evolutionary optimization using selective surrogate ensembles[J]. IEEE Transactions on Evolutionary Computation, 2018, 23 (2): 203- 216
9 MOINGEON P, KUENEMANN M, GUEDJ M Artificial intelligence-enhanced drug design and development: toward a computational precision medicine[J]. Drug Discovery Today, 2022, 27 (1): 215- 222
doi: 10.1016/j.drudis.2021.09.006
10 WANG H, JIN Y, JANSEN J O Data-driven surrogate-assisted multi-objective evolutionary optimization of a trauma system[J]. IEEE Transactions on Evolutionary Computation, 2016, 20 (6): 939- 952
doi: 10.1109/TEVC.2016.2555315
11 JIN Y, SENDHOFF B A systems approach to evolutionary multi-objective structural optimization and beyond[J]. IEEE Computational Intelligence Magazine, 2009, 4 (3): 62- 76
doi: 10.1109/MCI.2009.933094
12 LI J, ZHAN Z, ZHANG J Evolutionary computation for expensive optimization: a survey[J]. Machine Intelligence Research, 2022, 19 (1): 3- 23
doi: 10.1007/s11633-022-1317-4
13 CAI X, RUAN G, YUAN B, et al Complementary surrogate-assisted differential evolution algorithm for expensive multi-objective problems under a limited computational budget[J]. Information Sciences, 2023, 632: 791- 814
doi: 10.1016/j.ins.2023.03.005
14 CHUGH T, SINDHYA K, HAKANEN J, et al A survey on handling computationally expensive multi-objective optimization problems with evolutionary algorithms[J]. Soft Computing, 2019, 23: 3137- 3166
doi: 10.1007/s00500-017-2965-0
15 ALLMENDINGER R, EMMERICH M, HAKANEN J, et al Surrogate-assisted multicriteria optimization: complexities, prospective solutions, and business case[J]. Journal of Multi-Criteria Decision Analysis, 2017, 24 (1/2): 5- 24
doi: 10.1002/mcda.1605
16 ONG Y, NAIR P, KEANE A, et al Surrogate-assisted evolutionary optimization frameworks for high-fidelity engineering design problems[J]. Knowledge Incorporation in Evolutionary Computation, 2005, 167: 307- 331
17 SANTANA Q, MONTANO A, COELLO C A review of techniques for handling expensive functions in evolutionary multi-objective optimization[J]. Computational Intelligence in Expensive Optimization Problems, 2010, 2: 29- 59
18 TABATABAEI M, HAKANEN J, HARTIKAINEN M, et al A survey on handling computationally expensive multi-objective optimization problems using surrogates: non-nature inspired methods[J]. Structural and Multidisciplinary Optimization, 2015, 52 (1): 1- 25
doi: 10.1007/s00158-015-1226-z
19 HE C, ZHANG Y, GONG D, et al A review of surrogate-assisted evolutionary algorithms for expensive optimization problems[J]. Expert Systems with Applications, 2023, 217 (119495): 1- 13
20 ZHAO T, TU W, FANG Z, et al Optimizing living material delivery during the COVID-19 outbreak[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23 (7): 6709- 6719
21 JIN Y. Data driven evolutionary optimization of complex systems: big data versus small data [C]// 18th Genetic and Evolutionary Computation Conference Companion . New York: ACM, 2016: 1281-1282.
22 QIN H, HUANG W, SONG B, et al Hybrid method for inverse design of orbital angular momentum transmission fiber based on neural network and optimization algorithms[J]. Journal of Lightwave Technology, 2022, 40 (17): 5974- 5985
doi: 10.1109/JLT.2022.3185059
23 WÖHRLE H, SCHNEIDER F, SCHLENKE F, et al Multi-objective surrogate-model-based neural architecture and physical design co-optimization of energy efficient neural network hardware accelerators[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 70 (1): 40- 53
24 LIU Y, WANG H Surrogate-assisted hybrid evolutionary algorithm with local estimation of distribution for expensive mixed-variable optimization problems[J]. Applied Soft Computing, 2023, 133 (109957): 1- 16
25 LI J, ZHAN Z, XU J, et al Surrogate-assisted hybrid-model estimation of distribution algorithm for mixed-variable hyperparameters optimization in convolutional neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 43 (5): 2338- 2352
26 RAHI K, SINGH H, RAY T. A Generalized surrogate-assisted evolutionary algorithm for expensive multi-objective optimization [C]// IEEE Congress on Evolutionary Computation . Chicago: IEEE, 2023: 1-8.
27 ZHOU Y, HE X, CHEN Z, et al A neighborhood regression optimization algorithm for computationally expensive optimization problems[J]. IEEE Transactions on Cybernetics, 2020, 52 (5): 3018- 3031
28 TONG H, HUANG C, MINKU L L, et al Surrogate models in evolutionary single-objective optimization: a new taxonomy and experimental study[J]. Information Sciences, 2021, 562: 414- 437
doi: 10.1016/j.ins.2021.03.002
29 WANG X, JIN Y, SCHMITT S, et al An adaptive Bayesian approach to surrogate-assisted evolutionary multi-objective optimization[J]. Information Sciences, 2020, 519: 317- 331
doi: 10.1016/j.ins.2020.01.048
30 LU L, ZHENG H, JIE J, et al Reinforcement learning-based particle swarm optimization for sewage treatment control[J]. Complex and Intelligent Systems, 2021, 7 (5): 2199- 2210
doi: 10.1007/s40747-021-00395-w
31 SUN Y, WANG H, XUE B, et al Surrogate-assisted evolutionary deep learning using an end-to-end random forest-based performance predictor[J]. IEEE Transactions on Evolutionary Computation, 2020, 24 (2): 350- 364
doi: 10.1109/TEVC.2019.2924461
32 ZHOU Y, JIN Y, SUN Y, et al Surrogate-assisted cooperative co-evolutionary reservoir architecture search for liquid state machines[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7 (5): 1484- 1498
doi: 10.1109/TETCI.2022.3228538
33 THIRUVADY D, NGUYEN S, SHIRI F, et al Surrogate-assisted population based ACO for resource constrained job scheduling with uncertainty[J]. Swarm and Evolutionary Computation, 2022, 69 (101029): 1- 16
34 ZHANG J, ZHOU A, ZHANG G. A classification and Pareto domination based multi-objective evolutionary algorithm [C]// IEEE Congress on Evolutionary Computation . Sendai: IEEE, 2015: 2883-2890.
35 ZHANG T, LI F, ZHAO X, et al A convolutional neural network-based surrogate model for multi-objective optimization evolutionary algorithm based on decomposition[J]. Swarm and Evolutionary Computation, 2022, 72 (101081): 1- 10
36 LIANG Z, LI Y, WAN Z. Large scale many-objective optimization driven by distributional adversarial networks[EB/OL].[2024-02-01]. https://arxiv.org/abs/2003.07013.
37 GUO D, WANG X, GAO K, et al Evolutionary optimization of high-dimensional multi-objective and many-objective expensive problems assisted by a dropout neural network[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 52 (4): 2084- 2097
38 HUANG P, WANG H Comparative empirical study on constraint handling in offline data-driven evolutionary optimization[J]. Applied Soft Computing, 2021, 110 (107603): 1- 11
39 LI J Y, ZHAN Z H, WANG C, et al Boosting data-driven evolutionary algorithm with localized data generation[J]. IEEE Transactions on Evolutionary Computation, 2020, 24 (5): 923- 937
doi: 10.1109/TEVC.2020.2979740
40 LI J, ZHAN Z, WANG H, et al Data-driven evolutionary algorithm with perturbation-based ensemble surrogates[J]. IEEE Transactions on Cybernetics, 2020, 51 (8): 3925- 3937
41 HUANG P, WANG H, MA W. Stochastic ranking for offline data-driven evolutionary optimization using radial basis function networks with multiple kernels [C]// IEEE Symposium Series on Computational Intelligence . Xiamen: IEEE, 2019: 2050-2057.
42 HUANG P, WANG H, JIN Y Offline data-driven evolutionary optimization based on tri-training[J]. Swarm and Evolutionary Computation, 2021, 60 (100800): 1- 12
43 ZHEN H, GONG W, WANG L Offline data-driven evolutionary optimization based on model selection[J]. Swarm and Evolutionary Computation, 2022, 71 (101080): 1- 13
44 FAN C, HOU B, ZHENG J, et al A surrogate-assisted particle swarm optimization using ensemble learning for expensive problems with small sample datasets[J]. Applied Soft Computing, 2020, 91 (106242): 1- 17
45 CHUGH T, CHAKRABORTI N, SINDHYA K, et al A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem[J]. Materials and Manufacturing Processes, 2017, 32 (10): 1172- 1178
doi: 10.1080/10426914.2016.1269923
46 FARZANEH M, MAHDIAN TOROGHI R. Music generation using an interactive evolutionary algorithm [C]// Mediterranean Conference on Pattern Recognition and Artificial Intelligence . Istanbul: Springer, 2020: 207-217.
47 GUO D, CHAI T, DING J, et al. Small data driven evolutionary multi-objective optimization of fused magnesium furnaces [C]// IEEE Symposium Series on Computational Intelligence . Athens: IEEE, 2016: 1-8.
48 LIU Y, LIU J, JIN Y, et al A surrogate-assisted two-stage differential evolution for expensive constrained optimization[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7 (3): 715- 730
doi: 10.1109/TETCI.2023.3240221
49 SI L, ZHANG X, TIAN Y, et al Linear subspace surrogate modeling for large-scale expensive single/multi-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2023, 1 (1): 1- 16
50 HUANG H G, GONG Y J Contrastive learning: An alternative surrogate for offline data-driven evolutionary computation[J]. IEEE Transactions on Evolutionary Computation, 2022, 27 (2): 370- 384
51 GONG Y, ZHONG Y, HUANG H Offline data-driven optimization at scale: a cooperative coevolutionary approach[J]. IEEE Transactions on Evolutionary Computation, 2023, 1 (2): 1- 15
52 ZHEN H, GONG W, WANG L, et al Two-stage data-driven evolutionary optimization for high-dimensional expensive problems[J]. IEEE Transactions on Cybernetics, 2021, 53 (4): 2368- 2379
53 WEI F, CHEN W, MAO W, et al An efficient two-stage surrogate-assisted differential evolution for expensive inequality constrained optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53 (12): 7769- 7782
doi: 10.1109/TSMC.2023.3299434
54 WANG H, JIN Y A random forest-assisted evolutionary algorithm for data-driven constrained multi-objective combinatorial optimization of trauma systems[J]. IEEE Transactions on Cybernetics, 2018, 50 (2): 536- 549
55 MAZUMDAR A, CHUGH T, HAKANEN J, et al Probabilistic selection approaches in decomposition-based evolutionary algorithms for offline data-driven multi-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2022, 26 (5): 1182- 1191
doi: 10.1109/TEVC.2022.3154231
56 LIU Z, WANG H, JIN Y Performance indicator-based adaptive model selection for offline data-driven multi-objective evolutionary optimization[J]. IEEE Transactions on Cybernetics, 2022, 53 (10): 6263- 6276
57 GONG Y J, GUO J X, LIN D L, et al Automated team assembly in mobile games: a data-driven evolutionary approach using a deep learning surrogate[J]. IEEE Transactions on Games, 2022, 15 (1): 67- 80
58 NESHAT M, ALEXANDER B, WAGNER M A hybrid cooperative co-evolution algorithm framework for optimising power take off and placements of wave energy converters[J]. Information Sciences, 2020, 534: 218- 244
doi: 10.1016/j.ins.2020.03.112
59 LIU Y, LIU J, JIN Y Surrogate-assisted multi-population particle swarm optimizer for high-dimensional expensive optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 52 (7): 4671- 4684
60 TIAN J, SUN C, TAN Y, et al Granularity-based surrogate-assisted particle swarm optimization for high-dimensional expensive optimization[J]. Knowledge-based Systems, 2020, 187 (104815): 1- 15
61 LI F, CAI X, GAO L, et al A surrogate-assisted multi-swarm optimization algorithm for high-dimensional computationally expensive problems[J]. IEEE Transactions on Cybernetics, 2020, 51 (3): 1390- 1402
62 LI F, LI Y, CAI X, et al A surrogate-assisted hybrid swarm optimization algorithm for high-dimensional computationally expensive problems[J]. Swarm and Evolutionary Computation, 2022, 72 (101096): 1- 16
63 ZHAO L, HU Y, WANG B, et al A surrogate-assisted evolutionary algorithm based on multi-population clustering and prediction for solving computationally expensive dynamic optimization problems[J]. Expert Systems with Applications, 2023, 223 (119815): 1- 18
64 LIU Y, LIU J, TAN S Decision space partition based surrogate-assisted evolutionary algorithm for expensive optimization[J]. Expert Systems with Applications, 2023, 214 (119075): 1- 20
65 WANG Y, LIN J, LIU J, et al Surrogate-assisted differential evolution with region division for expensive optimization problems with discontinuous responses[J]. IEEE Transactions on Evolutionary Computation, 2021, 26 (4): 780- 792
66 SUN C, JIN Y, CHENG R, et al Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems[J]. IEEE Transactions on Evolutionary Computation, 2017, 21 (4): 644- 660
doi: 10.1109/TEVC.2017.2675628
67 WU X, LIN Q, LI J, et al An ensemble surrogate-based coevolutionary algorithm for solving large-scale expensive optimization problems[J]. IEEE Transactions on Cybernetics, 2023, 53 (9): 5854- 5866
doi: 10.1109/TCYB.2022.3200517
68 ZHAO F, BAO H, WANG L, et al A multi-population cooperative coevolutionary whale optimization algorithm with a two-stage orthogonal learning mechanism[J]. Knowledge-based Systems, 2022, 246 (108664): 1- 33
69 CHEN A, REN Z, WANG M, et al A surrogate-assisted highly cooperative coevolutionary algorithm for hyperparameter optimization in deep convolutional neural network[J]. Applied Soft Computing, 2023, 147 (11079): 1- 13
70 LIU C, WAN Z, LIU Y, et al Trust-region based adaptive radial basis function algorithm for global optimization of expensive constrained black-box problems[J]. Applied Soft Computing, 2021, 105 (107233): 1- 17
71 WANG H, JIN Y, DOHERTY J Committee-based active learning for surrogate-assisted particle swarm optimization of expensive problems[J]. IEEE Transactions on Cybernetics, 2017, 47 (9): 2664- 2677
doi: 10.1109/TCYB.2017.2710978
72 YU H, TAN Y, ZENG J, et al Surrogate-assisted hierarchical particle swarm optimization[J]. Information Sciences, 2018, 454: 59- 72
73 CHU S, DU Z, PENG Y, et al Fuzzy hierarchical surrogate assists probabilistic particle swarm optimization for expensive high dimensional problem[J]. Knowledge-based Systems, 2021, 220 (106939): 1- 15
74 ZHANG J, LI M, YUE X, et al A hierarchical surrogate assisted optimization algorithm using teaching-learning-based optimization and differential evolution for high-dimensional expensive problems[J]. Applied Soft Computing, 2024, 152 (111212): 1- 26
75 SUN C, JIN Y, ZENG J, et al A two-layer surrogate-assisted particle swarm optimization algorithm[J]. Soft computing, 2015, 19: 1461- 1475
doi: 10.1007/s00500-014-1283-z
76 REN X, GUO D, REN Z, et al Enhancing hierarchical surrogate-assisted evolutionary algorithm for high-dimensional expensive optimization via random projection[J]. Complex and Intelligent Systems, 2021, 7: 2961- 2975
doi: 10.1007/s40747-021-00484-w
77 YANG S, QI Y, YANG R, et al A surrogate assisted evolutionary multi-tasking optimization algorithm[J]. Applied Soft Computing, 2023, 132 (109775): 1- 13
78 GUPTA A, ONG Y S, FENG L Multi-factorial evolution: toward evolutionary multi-tasking[J]. IEEE Transactions on Evolutionary Computation, 2015, 20 (3): 343- 357
79 WANG H, FENG L, JIN Y, et al Surrogate-assisted evolutionary multi-tasking for expensive minimax optimization in multiple scenarios[J]. IEEE Computational Intelligence Magazine, 2021, 16 (1): 34- 48
doi: 10.1109/MCI.2020.3039067
80 HUANG S, ZHONG J, YU W Surrogate-assisted evolutionary framework with adaptive knowledge transfer for multi-tasking optimization[J]. IEEE Transactions on Emerging Topics in Computing, 2019, 9 (4): 1930- 1944
81 LIAO P, SUN C, ZHANG G, et al Multi-surrogate multi-tasking optimization of expensive problems[J]. Knowledge-based Systems, 2020, 205 (106262): 1- 14
82 RUSSO I, BARBOSA H A. Multi-tasking surrogate-assisted differential evolution method for solving bi-level optimization problems [C]// IEEE Congress on Evolutionary Computation . Padua: IEEE, 2022: 1-8.
83 JI X, ZHANG Y, GONG D, et al Multi-surrogate-assisted multi-tasking particle swarm optimization for expensive multi-modal problems[J]. IEEE Transactions on Cybernetics, 2021, 53 (4): 2516- 2530
84 ZHU H, SHI L, HU Z, et al A multi-surrogate multi-tasking genetic algorithm with an adaptive training sample selection strategy for expensive optimization problems[J]. Engineering Applications of Artificial Intelligence, 2024, 130 (107684): 1- 12
85 DU W, REN Z, WANG J, et al A surrogate-assisted evolutionary algorithm with knowledge transfer for expensive multi-modal optimization problems[J]. Information Sciences, 2024, 652 (119745): 1- 24
86 LI K, CHEN R, YAO X A data-driven evolutionary transfer optimization for expensive problems in dynamic environments[J]. IEEE Transactions on Evolutionary Computation, 2024, 28 (5): 1396- 1411
87 LI G, WANG Z, GONG M Expensive optimization via surrogate-assisted and model-free evolutionary optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 53 (5): 2758- 2769
88 CUI M, LI L, ZHOU M, et al Surrogate-assisted autoencoder-embedded evolutionary optimization algorithm to solve high-dimensional expensive problems[J]. IEEE Transactions on Evolutionary Computation, 2021, 26 (4): 676- 689
89 ZHAO X, JIA X, ZHANG T, et al A supervised surrogate-assisted evolutionary algorithm for complex optimization problems[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1- 14
90 LIU Q, JIN Y, HEIDERICH M, et al Surrogate-assisted evolutionary optimization of expensive many-objective irregular problems[J]. Knowledge-based Systems, 2022, 240 (108197): 1- 16
91 SHEN J, WANG P, DONG H, et al Surrogate-assisted evolutionary algorithm with decomposition-based local learning for high-dimensional multi-objective optimization[J]. Expert Systems with Applications, 2024, 240 (122575): 1- 15
92 YUAN Y, XU H, WANG B, et al Balancing convergence and diversity in decomposition-based many-objective optimizers[J]. IEEE Transactions on Evolutionary Computation, 2015, 20 (2): 180- 198
93 SONG Z, WANG H, HE C, et al. A Kriging-assisted two-archive evolutionary algorithm for expensive many-objective optimization [J]. IEEE Transactions on Evolutionary Computation , 2021, 25(6): 1013-1027.
94 LV Z, WANG L, HAN Z, et al Surrogate-assisted particle swarm optimization algorithm with Pareto active learning for expensive multi-objective optimization[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6 (3): 838- 849
doi: 10.1109/JAS.2019.1911450
95 DEB K, HUSSEIN R, ROY P, et al A taxonomy for metamodeling frameworks for evolutionary multi-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2018, 23 (1): 104- 116
96 LUO J, GUPTA A, ONG Y, et al Evolutionary optimization of expensive multi-objective problems with co-sub-Pareto front Gaussian process surrogates[J]. IEEE Transactions on Cybernetics, 2018, 49 (5): 1708- 1721
97 KNOWLES J ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multi-objective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2006, 10 (1): 50- 66
doi: 10.1109/TEVC.2005.851274
98 TANG J, WANG H, XIONG L Surrogate-assisted multi-objective optimization via knee-oriented Pareto front estimation[J]. Swarm and Evolutionary Computation, 2023, 77 (101252): 1- 15
99 SHEN J, WANG P, TIAN Y, et al A dual surrogate assisted evolutionary algorithm based on parallel search for expensive multi/many-objective optimization[J]. Applied Soft Computing, 2023, 148 (110879): 1- 17
100 HABIB A, SINGH H K, CHUGH T, et al A multiple surrogate assisted decomposition-based evolutionary algorithm for expensive multi/many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2019, 23 (6): 1000- 1014
doi: 10.1109/TEVC.2019.2899030
101 GUO D, JIN Y, DING J, et al Heterogeneous ensemble-based infill criterion for evolutionary multi-objective optimization of expensive problems[J]. IEEE Transactions on Cybernetics, 2018, 49 (3): 1012- 1025
102 YANG Q, ZHAN Z, LIU X, et al Grid classification-based surrogate-assisted particle swarm optimization for expensive multi-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2024, 28 (6): 1867- 1881
103 PAN L, HE C, TIAN Y, et al A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2018, 23 (1): 74- 88
104 LI J, WANG P, DONG H, et al A classification surrogate-assisted multi-objective evolutionary algorithm for expensive optimization[J]. Knowledge-based Systems, 2022, 242 (108416): 1- 23
105 WANG R, ZHOU Y, CHEN H, et al A surrogate-assisted many-objective evolutionary algorithm using multi-classification and coevolution for expensive optimization problems[J]. IEEE Access, 2021, 9: 159160- 159174
doi: 10.1109/ACCESS.2021.3131587
106 HE C, HUANG S, CHENG R, et al Evolutionary multi-objective optimization driven by generative adversarial networks (GANs)[J]. IEEE Transactions on Cybernetics, 2020, 51 (6): 3129- 3142
107 HAO H, ZHOU A, ZHANG H. An approximated domination relationship based on binary classifiers for evolutionary multi-objective optimization [C]// IEEE Congress on Evolutionary Computation . Kraków: IEEE, 2021: 2427-2434.
108 YUAN Y, BANZHAF W Expensive multi-objective evolutionary optimization assisted by dominance prediction[J]. IEEE Transactions on Evolutionary Computation, 2021, 26 (1): 159- 173
109 HAO H, ZHOU A, QIAN H, et al Expensive multi-objective optimization by relation learning and prediction[J]. IEEE Transactions on Evolutionary Computation, 2022, 26 (5): 1157- 1170
doi: 10.1109/TEVC.2022.3152582
110 YANG C, DING J, JIN Y, et al Offline data-driven multi-objective optimization: knowledge transfer between surrogates and generation of final solutions[J]. IEEE Transactions on Evolutionary Computation, 2019, 24 (3): 409- 423
111 TIAN Y, HU J, HE C, et al A pairwise comparison based surrogate-assisted evolutionary algorithm for expensive multi-objective optimization[J]. Swarm and Evolutionary Computation, 2023, 80 (101323): 1- 12
112 TIAN Y, SI L, ZHANG X, et al Local model-based Pareto front estimation for multi-objective optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 53 (1): 623- 634
113 ZHANG X, YU G, JIN Y, et al An adaptive Gaussian process based manifold transfer learning to expensive dynamic multi-objective optimization[J]. Neurocomputing, 2023, 538 (126212): 1- 14
114 WANG X, JIN Y, SCHMITT S, et al Transfer learning based co-surrogate assisted evolutionary bi-objective optimization for objectives with non-uniform evaluation times[J]. Evolutionary Computation, 2022, 30 (2): 221- 251
115 WU X, LIN Q, LIN W, et al A Kriging model-based evolutionary algorithm with support vector machine for dynamic multi-modal optimization[J]. Engineering Applications of Artificial Intelligence, 2023, 122 (106039): 1- 18
116 SONG Z, WANG H, JIN Y A surrogate-assisted evolutionary framework with regions of interests-based data selection for expensive constrained optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53 (10): 6268- 6280
doi: 10.1109/TSMC.2023.3281822
117 XU J, JIN Y, DU W A federated data-driven evolutionary algorithm for expensive multi-/many-objective optimization[J]. Complex and Intelligent Systems, 2021, 7 (6): 3093- 3109
doi: 10.1007/s40747-021-00506-7
118 ZHAN D, CHENG Y, LIU J Expected improvement matrix-based infill criteria for expensive multi-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21 (6): 956- 975
doi: 10.1109/TEVC.2017.2697503
119 YANG K, AFFENZELLER M, DONG G A parallel technique for multi-objective Bayesian global optimization: using a batch selection of probability of improvement[J]. Swarm and Evolutionary Computation, 2022, 75 (101183): 1- 18
120 SHU L, JIANG P, SHAO X, et al A new multi-objective Bayesian optimization formulation with the acquisition function for convergence and diversity[J]. Journal of Mechanical Design, 2020, 142 (9): 1- 38
121 CAI X, ZOU T, GAO L Surrogate-assisted operator-repeated evolutionary algorithm for computationally expensive multi-objective problems[J]. Applied Soft Computing, 2023, 147 (110785): 1- 19
122 LI F, SHEN W, CAI X, et al A fast surrogate-assisted particle swarm optimization algorithm for computationally expensive problems[J]. Applied Soft Computing, 2020, 92 (106303): 1- 18
123 LI F, CAI X, GAO L Ensemble of surrogates assisted particle swarm optimization of medium scale expensive problems[J]. Applied Soft Computing, 2019, 74: 291- 305
doi: 10.1016/j.asoc.2018.10.037
124 TIAN J, TAN Y, ZENG J, et al Multi-objective infill criterion driven Gaussian process-assisted particle swarm optimization of high-dimensional expensive problems[J]. IEEE Transactions on Evolutionary Computation, 2018, 23 (3): 459- 472
125 LI G, XIE L, WANG Z, et al Evolutionary algorithm with individual-distribution search strategy and regression-classification surrogates for expensive optimization[J]. Information Sciences, 2023, 634: 423- 442
doi: 10.1016/j.ins.2023.03.101
126 WANG X, GAO L, LI X Multiple surrogates and offspring-assisted differential evolution for high-dimensional expensive problems[J]. Information Sciences, 2022, 592: 174- 191
doi: 10.1016/j.ins.2022.01.052
127 YU H, TAN Y, SUN C, et al A generation-based optimal restart strategy for surrogate-assisted social learning particle swarm optimization[J]. Knowledge-based Systems, 2019, 163: 14- 25
doi: 10.1016/j.knosys.2018.08.010
128 LI F, GAO L, SHEN W, et al Surrogate-assisted multi-objective evolutionary optimization with a multi-offspring method and two infill criteria[J]. Swarm and Evolutionary Computation, 2023, 79 (101315): 1- 21
129 CAI X, GAO L, LI F Sequential approximation optimization assisted particle swarm optimization for expensive problems[J]. Applied Soft Computing, 2019, 83 (105659): 1- 16
130 CHUGH T, JIN Y, MIETTINEN K, et al A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2018, 22 (1): 129- 142
doi: 10.1109/TEVC.2016.2622301
131 ZHOU Z, ONG Y, NAIR P, et al Combining global and local surrogate models to accelerate evolutionary optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2006, 37 (1): 66- 76
132 TIAN Y, LU C, ZHANG X, et al Solving large-scale multi-objective optimization problems with sparse optimal solutions via unsupervised neural networks[J]. IEEE Transactions on Cybernetics, 2020, 51 (6): 3115- 3128
133 LIU S, YAN X, JIN Y. End-to-end Pareto set prediction with graph neural networks for multi-objective facility location [C]// International Conference on Evolutionary Multi-Criterion Optimization. Switzerland: Springer, 2023: 147-161.
134 LIU D, BAI T, DENG M, et al A parallel approximate evaluation-based model for multi-objective operation optimization of reservoir group[J]. Swarm and Evolutionary Computation, 2023, 78 (101288): 1- 18
135 LIANG J, MEYERSON E, HODJAT B, et al. Evolutionary neural autoML for deep learning [C]// Proceedings of the Genetic and Evolutionary Computation Conference . New York: ACM, 2019: 401-409.
136 WOLPERT D, MACREADY W No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1 (1): 67- 82
doi: 10.1109/4235.585893
137 YANG Z, QIU H, GAO L, et al A general framework of surrogate-assisted evolutionary algorithms for solving computationally expensive constrained optimization problems[J]. Information Sciences, 2023, 619: 491- 508
doi: 10.1016/j.ins.2022.11.021
138 TIAN Y, PENG S, RODEMANN T, et al. Automated selection of evolutionary multi-objective optimization algorithms [C]// 2019 IEEE Symposium Series on Computational Intelligence . Xiamen: IEEE, 2019: 3225-3232.
139 WANG J L, ZHANG L M, ZHANG K, et al Multi-surrogate framework with an adaptive selection mechanism for production optimization[J]. Petroleum Science, 2024, 21 (1): 366- 383
doi: 10.1016/j.petsci.2023.08.028
140 DAI R, ZHENG H, JIE J, et al. Automatic particle swarm optimizer based on reinforcement learning [C]// International Conference on Bio-Inspired Computing: Theories and Applications. Singapore: Springer, 2022, 1565: 317-331.
141 TIAN Y, LI X, MA H, et al Deep reinforcement learning based adaptive operator selection for evolutionary multi-objective optimization[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 7 (4): 1051- 1064
142 CHEN H, LI W, CUI W Surrogate-assisted evolutionary algorithm with hierarchical surrogate technique and adaptive infill strategy[J]. Expert Systems with Applications, 2023, 232 (120826): 1- 19
143 YOUNIS A, DONG Z Adaptive surrogate assisted multi-objective optimization approach for highly nonlinear and complex engineering design problems[J]. Applied Soft Computing, 2023, 150 (111065): 1- 12
144 DEB K, ROY P C, HUSSEIN R Surrogate modeling approaches for multi-objective optimization: methods, taxonomy, and results[J]. Mathematical and Computational Applications, 2020, 26 (1): 5
doi: 10.3390/mca26010005
145 WU M, WANG L, XU J, et al Adaptive surrogate-assisted multi-objective evolutionary algorithm using an efficient infill technique[J]. Swarm and Evolutionary Computation, 2022, 75 (101170): 1- 18
146 WU M, XU J, WANG L, et al Adaptive multi-surrogate and module-based optimization algorithm for high-dimensional and computationally expensive problems[J]. Information Sciences, 2023, 645 (119308): 1- 25
147 LU H, LIU Y, CHENG S, et al Adaptive online data-driven closed-loop parameter control strategy for swarm intelligence algorithm[J]. Information Sciences, 2020, 536: 25- 52
doi: 10.1016/j.ins.2020.05.016
148 LIU Y, LU H, CHENG S, et al. An adaptive online parameter control algorithm for particle swarm optimization based on reinforcement learning [C]// 2019 IEEE Congress on Evolutionary Computation . Wellington: IEEE, 2019: 815-822.
149 GAO H, ZHANG Q, BU X, et al Quadruple parameter adaptation growth optimizer with integrated distribution, confrontation, and balance features for optimization[J]. Expert Systems with Applications, 2024, 235 (121218): 1- 27
150 CHEN J, LUO F, LI G, et al Batch Bayesian optimization with adaptive batch acquisition functions via multi-objective optimization[J]. Swarm and Evolutionary Computation, 2023, 79 (101293): 1- 14
151 YANG Z, QIU H, GAO L, et al Surrogate-assisted MOEA/D for expensive constrained multi-objective optimization[J]. Information Sciences, 2023, 639 (119016): 1- 18
152 WU S, ZHAN Z, ZHANG J SAFE: scale-adaptive fitness evaluation method for expensive optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2021, 25 (3): 478- 491
doi: 10.1109/TEVC.2021.3051608
153 JI X, ZHANG Y, GONG D, et al Dual-surrogate-assisted cooperative particle swarm optimization for expensive multi-modal problems[J]. IEEE Transactions on Evolutionary Computation, 2021, 25 (4): 794- 808
doi: 10.1109/TEVC.2021.3064835
154 DONG J, LI Q, DENG L Fast multi-objective optimization of multi-parameter antenna structures based on improved MOEA/D with surrogate-assisted model[J]. AEU-International Journal of Electronics and Communications, 2017, 72: 192- 199
155 FU K, CAI X, YUAN B, et al An efficient surrogate assisted particle swarm optimization for antenna synthesis[J]. IEEE Transactions on Antennas and Propagation, 2022, 70 (7): 4977- 4984
doi: 10.1109/TAP.2022.3153080
156 LIU Y, YANG Z, XU D, et al A Kriging-assisted double population differential evolution for mixed-integer expensive constrained optimization problems with mixed constraints[J]. Swarm and Evolutionary Computation, 2024, 84 (101428): 1- 19
157 LIU Y, YANG Z, XU D, et al A surrogate-assisted differential evolution for expensive constrained optimization problems involving mixed-integer variables[J]. Information Sciences, 2023, 622: 282- 302
doi: 10.1016/j.ins.2022.11.167
158 HE C, CHENG R, JIN Y, et al. Surrogate-assisted expensive many-objective optimization by model fusion [C]// 2019 IEEE Congress on Evolutionary Computation . Wellington: IEEE, 2019: 1672-1679.
159 PAN J, LIANG Q, CHU S, et al A multi-strategy surrogate-assisted competitive swarm optimizer for expensive optimization problems[J]. Applied Soft Computing, 2023, 147 (110733): 1- 21
160 LIU Z, NISHI T Surrogate-assisted evolutionary optimization for perishable inventory management in multi-echelon distribution systems[J]. Expert Systems with Applications, 2024, 238 (122179): 1- 20
161 HAN H, ZHANG L, QIAO J Dynamic optimal control for wastewater treatment process under multiple operating conditions[J]. IEEE Transactions on Automation Science and Engineering, 2022, 20 (3): 1907- 1919
162 BAO Z, CHEN L, QIU K A surrogate-assisted heuristic approach for the joint optimization of resource allocation and scheduling of an aircraft final assembly line[J]. Journal of Manufacturing Systems, 2023, 70: 99- 112
doi: 10.1016/j.jmsy.2023.07.003
163 SONG D, SHEN X, GAO Y, et al Application of surrogate-assisted global optimization algorithm with dimension-reduction in power optimization of floating offshore wind farm[J]. Applied Energy, 2023, 351 (121891): 1- 14
[1] 钟崴 童水光. 锅炉智能CAD的技术和方法研究[J]. J4, 2006, 40(4): 572-576.