Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (1): 120-129    DOI: 10.3785/j.issn.1008-973X.2025.01.012
机械工程、能源工程     
基于博弈论的飞机总装物流配送系统资源配置
董玉龙(),陈璐*(),鲍中凯
上海交通大学 工业工程与管理系,上海 200240
Resource allocation of aircraft final assembly logistics distribution system based on game theory
Yulong DONG(),Lu CHEN*(),Zhongkai BAO
Department of Industrial Engineering and Management, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(804 KB)   HTML
摘要:

在飞机总装物流配送系统中,仓储与配送多级子系统之间存在资源配置竞争问题,为此基于博弈论建立资源配置模型. 将包括零件总库料包存储区、线边库与工位暂存区在内的仓储子系统和包括货车、自动引导车(AGV)在内的配送子系统抽象为博弈主体. 引入2个效用值指标:资源投入成本和竞争效率,对博弈策略组合进行评价. 提出融合策略空间动态调整的粒子群优化算法进行模型求解,有效利用当前博弈策略组合的可行性信息,加速效用值计算. 算例实验结果表明,所得资源配置方案具有纳什均衡性和飞机产能提升适应能力,所提算法在纳什均衡性、总投入成本和单次迭代时间上的性能均优于对比算法.

关键词: 物流配送资源配置博弈论策略空间飞机总装    
Abstract:

A resource allocation model was established based on game theory, aiming at the problem of resource allocation competition between storage and distribution subsystems in an aircraft final assembly logistics distribution system. The storage subsystems such as package storage area in parts warehouse, line warehouse and station storage area, and the distribution subsystems such as truck and automatic guided vehicle (AGV) were abstracted as game players respectively. Two utility value indexes such as resource input cost and competition efficiency were introduced to evaluate the game strategy combination. A particle swarm optimization algorithm with dynamic adjustment of strategy space was proposed to solve the model, and the feasibility information of the current game strategy combination was effectively utilized to accelerate the utility value calculation. The numerical experiments results show that the obtained resource allocation scheme has Nash equilibrium and the adaptability to increased aircraft production capacity, and the proposed algorithm has better performance in Nash equilibrium, total input cost and single iteration time than comparison algorithms.

Key words: logistics distribution    resource allocation    game theory    strategy space    aircraft final assembly
收稿日期: 2023-11-28 出版日期: 2025-01-18
CLC:  TP 301.6  
基金资助: 国家自然科学基金资助项目(52175475).
通讯作者: 陈璐     E-mail: dongyulong@sjtu.edu.cn;chenlu@sjtu.edu.cn
作者简介: 董玉龙(1998—),男,硕士生,从事物流系统资源配置研究. orcid.org/0009-0003-1539-8090. E-mail:dongyulong@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
董玉龙
陈璐
鲍中凯

引用本文:

董玉龙,陈璐,鲍中凯. 基于博弈论的飞机总装物流配送系统资源配置[J]. 浙江大学学报(工学版), 2025, 59(1): 120-129.

Yulong DONG,Lu CHEN,Zhongkai BAO. Resource allocation of aircraft final assembly logistics distribution system based on game theory. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 120-129.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.01.012        https://www.zjujournals.com/eng/CN/Y2025/V59/I1/120

图 1  总装车间和零件总库布局
图 2  飞机总装物流配送系统的配送流程
图 3  博弈关系图
图 4  粒子编码示意图
图 5  所提粒子群优化算法的流程图
$ \left| I \right| $算法$ N $$ f $$ S $/千元$ K $$ {t}_{{\mathrm{C}}}/{\mathrm{s}} $
$ t/{\mathrm{s}} $
$ G_f/{\text{%}} $$ G_S/{\text{%}} $$ G_K/{\text{%}} $$ G_{{t}_{{\mathrm{C}}}}/{\text{%}} $
$ G_t/{\text{%}} $
100PSO{80,24,12,1,7}0.10912231.240.050.000.0017.39?8.06?20.00
BreedPSO{80,24,12,1,7}0.10912251.150.050.000.008.00?0.87?20.00
SimuAPSO{80,24,12,1,7}0.10912251.170.050.000.008.00?2.56?20.00
本研究{80,24,12,1,7}0.10912271.140.04
200PSO{180,20,20,1,3}0.101356249.500.40?100.003.5462.50?6.21?42.50
BreedPSO{180,28,20,1,3}0.001404267.130.270.000.0050.0024.96?14.81
SimuAPSO{180,20,20,1,3}0.101356317.880.25?100.003.5425.8113.07?8.00
本研究{180,28,20,1,3}0.001404398.910.23
300PSO{280,36,32,1,3}0.1020764827.290.57?100.00?19.0810.42?29.83?36.85
BreedPSO{280,20,20,1,8}0.1017163121.000.68?100.00?2.1070.97?8.81?47.06
SimuAPSO{280.20,20,1,5}0.0016804525.370.560.000.0017.78?24.52?35.71
本研究{280,20,20,1,5}0.0016805319.150.36
400PSO{298,60,24,1,1}0.1020343070.442.35?100.00?3.8363.33?72.25?82.98
BreedPSO{281,72,20,1,10}0.1120553043.821.46?100.00?4.8263.33?55.39?72.60
SimuAPSO{292,64,20,1,3}0.0019563259.811.870.000.0053.13?67.32?78.61
本研究{292,64,20,1,3}0.0019564919.550.40
500PSO{252,104,68,1,3}0.22337233133.664.05?54.55?21.6254.55?66.74?78.52
BreedPSO{292,68,40,3,10}0.13284439103.962.67?23.08?7.0730.77?57.23?67.42
SimuAPSO{296,68,44,1,5}0.10266444129.692.950.00?0.7915.91?65.72?70.51
本研究{281,72,44,1,5}0.1026435144.460.87
600PSO{299,72,64,2,10}0.11341734229.276.74?9.09?14.9341.18?69.96?78.78
BreedPSO{294,76,52,1,7}0.10294640160.494.010.00?1.3220.00?57.09?64.34
SimuAPSO{294,92,48,1,10}0.10297045226.845.0411.11?2.126.67?69.64?71.63
本研究{285,108,44,1,8}0.1029074868.871.43
700PSO{339,32,64,2,10}0.11329733330.4510.01?100.00?23.9378.79?46.92?70.33
BreedPSO{347,76,32,1,10}0.10260136262.047.28?100.00?3.5863.89?33.06?59.20
SimuAPSO{347,100,20,1,6}0.11237339356.779.15?100.005.6951.28?50.83?67.54
本研究{348,76,32,1,2}0.00250859175.422.97
812PSO{352,32,52,2,4}0.13294038365.659.62?100.00?25.8236.84?19.73?41.37
BreedPSO{396,20,32,1,10}0.10241237302.978.19?100.00?9.5840.54?3.13?31.14
SimuAPSO{399,44,20,1,5}0.00218144382.628.700.000.0018.18?23.29?35.17
本研究{399,44,20,1,5}0.00218152293.505.64
表 1  所提粒子群优化算法的最优性和求解速度分析
图 6  博弈主体单方面改变策略得到的效用值变化
TP/dU%
料包存储区线边库工位暂存区
1451.7276.0751.45
1354.3079.8854.02
1257.1584.0856.86
1160.3388.7560.02
1063.8893.9863.55
表 2  不同生产节拍下的仓储资源利用率
1 ZHENG Y, HAN D, NI Y, et al Research and application of bottom-up route-based product data conformity inspection approach for civil aircraft[J]. International Journal of Computer Integrated Manufacturing, 2014, 27 (6): 591- 607
doi: 10.1080/0951192X.2013.834464
2 陆志强, 胡鑫铭, 杜鑫 物料配送与线边存储集成决策模型与算法[J]. 浙江大学学报: 工学版, 2018, 52 (7): 1354- 1363
LU Zhiqiang, HU Xinming, DU Xin Integrated modeling and algorithm of material delivery and line-side storage problem[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (7): 1354- 1363
3 朱永国, 李俊杰, 刘春锋, 等 基于正态模糊时间窗约束的飞机装配物料配送路径规划[J]. 中国机械工程, 2017, 28 (21): 2534- 2541
ZHU Yongguo, LI Junjie, LIU Chunfeng, et al Aircraft assembly material delivery path planning based on normal fuzzy time window constraints[J]. China Mechanical Engineering, 2017, 28 (21): 2534- 2541
4 段胜文. 飞机脉动总装线生产物流布局方法研究[D]. 南京: 南京航空航天大学, 2016: 1–66.
DUAN Shengwen. Research on the production logistics layout method of the aircraft pulse final assembly line [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 1–66.
5 马小丽. 飞机总装配生产线优化设计研究[D]. 杭州: 浙江大学, 2017: 1–60.
MA Xiaoli. Research on optimal design for aircraft final assembly line [D]. Hangzhou: Zhejiang University, 2017: 1–60.
6 吴怡薇, 陆志强 飞机移动装配线资源水平问题的建模研究[J]. 工业工程与管理, 2017, 22 (1): 95- 101
WU Yiwei, LU Zhiqiang Modeling resource leveling problem for aircraft moving assembly line[J]. Industrial Engineering and Management, 2017, 22 (1): 95- 101
7 鲍中凯, 裘柯钧, 陈璐 考虑工时可变的飞机总装资源配置与作业调度[J]. 计算机集成制造系统, 2022, 28 (5): 1424- 1434
BAO Zhongkai, QIU Kejun, CHEN Lu Resource allocation and process scheduling problem of aircraft final assembly considering variable processing time[J]. Computer Integrated Manufacturing Systems, 2022, 28 (5): 1424- 1434
8 周韶武, 胡晓兵, 彭正超, 等 基于Petri网和Witness的SMT生产物流系统仿真及优化[J]. 现代制造工程, 2020, (11): 99- 105
ZHOU Shaowu, HU Xiaobing, PENG Zhengchao, et al Modeling and simulation optimization of SMT production logistics system based on Petri net and Witness[J]. Modern Manufacturing Engineering, 2020, (11): 99- 105
9 LI G Z, YANG S L, XU Z G, et al Resource allocation methodology based on object-oriented discrete event simulation: a production logistics system case study[J]. CIRP Journal of Manufacturing Science and Technology, 2020, 31: 394- 405
doi: 10.1016/j.cirpj.2020.07.001
10 WU S Q, XIANG W T, LI W D, et al Dynamic scheduling and optimization of AGV in factory logistics systems based on digital twin[J]. Applied Sciences, 2023, 13 (3): 1762
doi: 10.3390/app13031762
11 陈炫锐, 陈庆新, 毛宁, 等 多层车间中自动存取系统的AGV配置优化[J]. 计算机集成制造系统, 2023, 29 (5): 1562- 1575
CHEN Xuanrui, CHEN Qingxin, MAO Ning, et al AGV configuration optimization of autonomous vehicle storage and retrieval system in multi-floor workshop[J]. Computer Integrated Manufacturing Systems, 2023, 29 (5): 1562- 1575
12 刘雪梅, 刘涛, 顾佳巍, 等 随机型装配线平衡与缓冲区配置集成优化[J]. 同济大学学报: 自然科学版, 2018, 46 (8): 1098- 1106
LIU Xuemei, LIU Tao, GU Jiawei, et al Simultaneous balancing and buffer allocation for assembly line with stochastic task times[J]. Journal of Tongji University: Natural Science, 2018, 46 (8): 1098- 1106
13 TANG H T, CHENG X Y, JIANG W G, et al Research on equipment configuration optimization of AGV unmanned warehouse[J]. IEEE Access, 2021, 9: 47946- 47959
doi: 10.1109/ACCESS.2021.3066622
14 杨波. 基于博弈论的云计算资源配置优化方法研究[D]. 长沙: 湖南大学, 2018: 1–112.
YANG Bo. Optimization of research configuration for cloud computing based on game theoretical methods [D]. Changsha: Hunan University, 2018: 1–112.
15 毕晓君, 郭柳, 胡菘益 基于非合作博弈论的CoMP-JP资源分配算法[J]. 中南大学学报: 自然科学版, 2015, 46 (8): 2906- 2913
BI Xiaojun, GUO Liu, HU Songyi Resource allocation algorithm for CoMP-JP based on non-cooperative game theory[J]. Journal of Central South University: Science and Technology, 2015, 46 (8): 2906- 2913
16 刘一鸣, 盛文 相控阵雷达搜索和跟踪资源博弈分配策略[J]. 浙江大学学报: 工学版, 2020, 54 (10): 1883- 1891
LIU Yiming, SHENG Wen Game strategy of resource allocation for phased array radar search and tracking[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (10): 1883- 1891
17 王金凤, 杜雪珂, 翟雪琪, 等 基于合作博弈的煤矿生产物流系统资源配置研究[J]. 工矿自动化, 2015, 41 (12): 25- 30
WANG Jinfeng, DU Xueke, ZHAI Xueqi, et al Research of resource allocation of coal mine production logistics system based on cooperative game[J]. Industry and Mine Automation, 2015, 41 (12): 25- 30
18 FANG F, LIU S T, BASAL A, et al. Introduction to game theory [M]// KAMHOUA C A, KIEKINTVELD C D, FANG F, et al. Game theory and machine learning for cyber security . Hoboken: John Wiley & Sons, 2021: 21–46.
19 NASH J Non-cooperative games[J]. Annals of Mathematics, 1951, 54 (2): 286- 295
doi: 10.2307/1969529
20 MENG Y F, HE J H, LUO S C, et al An improved predator-prey particle swarm optimization algorithm for Nash equilibrium solution[J]. PLOS ONE, 2021, 16 (11): e0260231
doi: 10.1371/journal.pone.0260231
21 付建林, 张恒志, 张剑, 等 自动导引车调度优化研究综述[J]. 系统仿真学报, 2020, 32 (9): 1664- 1675
FU Jianlin, ZHANG Hengzhi, ZHANG Jian, et al Review on AGV scheduling optimization[J]. Journal of System Simulation, 2020, 32 (9): 1664- 1675
22 VIVALDINI K C T, ROCHA L F, BECKER M, et al. Comprehensive review of the dispatching, scheduling and routing of AGVs [C]// The 11th Portuguese Conference on Automatic Control . Porto: Springer, 2015: 505–514.
23 谭叶青, 李萍, 李潇, 等 基于BreedPSO算法及交叠法的紧凑型大角度双自由曲面透镜设计[J]. 光学技术, 2018, 44 (1): 123- 128
TAN Yeqing, LI Ping, LI Xiao, et al Optimization of double freeform-surface lens with large view angle based on BreedPSO algorithm and overlapping method[J]. Optical Technique, 2018, 44 (1): 123- 128
24 黄炯, 艾剑良, 万婧 基于模拟退火粒子群算法的飞机气动参数辨识[J]. 复旦学报: 自然科学版, 2016, 55 (3): 336- 341
HUANG Jiong, AI Jianliang, WAN Jing Identification of aircraft aerodynamic parameters based on SA-PSO algorithm[J]. Journal of Fudan University: Natural Science, 2016, 55 (3): 336- 341
[1] 章军辉,郭晓满,王静贤,付宗杰,刘禹希. 基于非合作博弈的车道保持共享控制[J]. 浙江大学学报(工学版), 2024, 58(5): 1001-1008.
[2] 李家碧,韩曙光. 考虑客户等级和时变路况的无人物流配送路径[J]. 浙江大学学报(工学版), 2023, 57(10): 2018-2027.
[3] 郑守国,张勇德,谢文添,樊虎,王青. 基于数字孪生的飞机总装生产线建模[J]. 浙江大学学报(工学版), 2021, 55(5): 843-854.
[4] 王青, 温李庆, 李江雄, 柯映林, 李涛, 张世炯. 基于Petri网的飞机总装配生产线建模及优化方法[J]. 浙江大学学报(工学版), 2015, 49(7): 1224-1231.
[5] 叶永, 刘南, 詹沙磊. 基于信息更新的应急资源配置序贯决策方法[J]. J4, 2013, 47(12): 2212-2220.
[6] 潘巨龙,李善平,张道远. 无线传感器网络簇内可疑节点的博弈检测方法[J]. J4, 2012, 46(1): 72-78.
[7] 谢俊 白兴忠 魏建详 陈琳 甘德强. 西北电网调峰成本补偿研究[J]. J4, 2009, 43(3): 584-588.
[8] 张维泽 林剑波 吴洪森 童若锋 董金祥. 基于改进蚁群算法的物流配送路径优化[J]. J4, 2008, 42(4): 574-578.