Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (12): 2609-2618    DOI: 10.3785/j.issn.1008-973X.2024.12.020
通信工程     
基于置信度和期望传播的GSM-OTFS信号检测算法
周围1,2(),窦文静1,2,李倩倩2,徐锐2
1. 重庆邮电大学 光电工程学院,重庆 400065
2. 重庆邮电大学 移动通信技术重庆市重点实验室,重庆 400065
GSM-OTFS signal detection algorithm based on belief propagation and expectation propagation
Wei ZHOU1,2(),Wenjing DOU1,2,Qianqian LI2,Rui XU2
1. School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2. Chongqing Key Laboratory of Mobile Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
 全文: PDF(2459 KB)   HTML
摘要:

结合正交时频空(OTFS)技术与广义空间调制(GSM),提出混合置信度(EP)和期望传播(BP)的EP-BP信号检测算法. 该算法将离散概率分布投影到多元复高斯分布函数中,通过均值向量和协方差矩阵的迭代传递计算出GSM发射符号置信度. 为了降低计算复杂度,设计了两阶段的TS-EP-BP信号检测算法:第1阶段通过EP-BP确定激活天线组合,第2阶段将因子图中的矢量变量节点(VN)分离为多个子VN,并剪除无效子VN. 考虑调制符号独立于激活天线,采用一元复高斯分布函数近似以大幅度减少符号置信度计算次数. 通过仿真对不同条件下不同算法的误码率进行对比,结果表明,所提EP-BP和TS-EP-BP算法具有较优的误码率性能,尤其TS-EP-BP算法可以通过改变第1阶段的最大迭代次数来灵活地平衡误码率性能和计算复杂度.

关键词: 正交时频空(OTFS)广义空间调制(GSM)置信传播期望传播信号检测    
Abstract:

A signal detection algorithm adopting the hybrid belief propagation and expectation propagation (EP-BP) was proposed, by combining the orthogonal time frequency space (OTFS) technology and the generalized spatial modulation (GSM). The discrete probability distribution was projected into a multivariate complex Gaussian function, and the beliefs of the GSM transmission symbols were calculated via the iterative propagation of the mean vectors and the covariance matrices. A two-stage TS-EP-BP signal detection algorithm was designed to reduce the computational complexity. The activated antenna combination was determined via the EP-BP in the first stage, and in the second stage, the vector variable node (VN) in the factor graph was decomposed into multiple sub-VNs, and the invalid sub-VNs were cut out. Considering that the modulation symbols were independent to the activated antennas, the computation times of symbol belief were greatly reduced by the approximation of the univariate complex Gaussian distribution function. Bit error rates of different algorithms in different conditions were compared through simulation, and the results showed that, the proposed EP-BP and TS-EP-BP algorithms had better performance of bit error rate, especially, by the TS-EP-BP algorithm, a flexible performance-complexity tradeoff was striked by changing the maximum iteration times in the first stage.

Key words: orthogonal time frequency space    generalized spatial modulation    belief propagation    expectation propagation    signal detection
收稿日期: 2023-10-09 出版日期: 2024-11-25
CLC:  TN 929.5  
基金资助: 国家自然科学基金资助项目(61701062);重庆市基础与前沿研究计划资助项目(cstc2019jcyj-msxmX0079).
作者简介: 周围(1971—),男,教授,博士,从事通信系统及其信号处理研究. orcid.org/0009-0001-3696-6988. E-mail:zhouw@cqupt.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
周围
窦文静
李倩倩
徐锐

引用本文:

周围,窦文静,李倩倩,徐锐. 基于置信度和期望传播的GSM-OTFS信号检测算法[J]. 浙江大学学报(工学版), 2024, 58(12): 2609-2618.

Wei ZHOU,Wenjing DOU,Qianqian LI,Rui XU. GSM-OTFS signal detection algorithm based on belief propagation and expectation propagation. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2609-2618.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.12.020        https://www.zjujournals.com/eng/CN/Y2024/V58/I12/2609

图 1  GSM-OTFS系统模型图
图 2  GSM-OTFS系统EP-BP算法因子图
图 3  GSM-OTFS系统TS-EP-BP算法因子图
算法复数乘法次数
EP-BP$ TMN[12{N_{\text{r}}}{N_{\text{t}}}+8{N_{\text{t}}}+(2N_{\text{t}}^2+{N_{\text{t}}}+2){C_{\text{c}}}+{N_{\text{a}}}{({C_{\text{m}}})^{{N_{\text{a}}}}}] $
TS-
EP-BP
$ \begin{gathered} {T^{\text{b}}}MN[12{N_{\text{r}}}{N_{\text{t}}}+8{N_{\text{t}}}+(2N_{\text{t}}^2+{N_{\text{t}}}+2){C_{\text{c}}}+{N_{\text{a}}}{({C_{\text{m}}})^{{N_{\text{a}}}}}]+ \\ (T - {T^{\text{b}}})MN[(13{N_{\text{r}}}+8{C_{\text{m}}}+2){N_{\text{a}}}+3{N_{\text{t}}}] \\ \end{gathered} $
GAMP[14]$ \begin{gathered} {N_{\text{t}}}N(4N_{\text{t}}^2+8{N_{\text{t}}}+1)+MN[10N_{\text{t}}^2{2^Q} - {N_{\text{t}}}+10{N_{\text{t}}} - \\ 6N_{\text{t}}^2+26{N_{\text{r}}}{N_{\text{t}}}+4N_{\text{r}}^3+22N_{\text{r}}^2 - {N_{\text{r}}}+8N_{\text{r}}^2{N_{\text{t}}}+ \\ 16{N_{\text{r}}}N_{\text{t}}^2+3 \times {2^Q} - 1+8{N_{\text{t}}}(2M+2N - 1)] \\ \end{gathered} $
MP[21]$ {(MN)^2}(84{C_{\text{m}}}+20) - MN(75{C_{\text{m}}}+10) $
表 1  算法复杂度总结表
参数数值
载波频率/ GHz4
子载波间隔/ kHz15
子载波个数($M$16、32
时隙数($N$16、32
调制阶数4-QAM
终端移动速度/ (km·h?1)500
路径数9
调制脉冲矩形窗
信道估计理想估计
表 2  GSM-OTFS系统仿真参数表
图 4  EP-BP算法的误码率性能与迭代次数关系
图 5  不同终端移动速度下EP-BP算法的误码率性能与信噪比关系
图 6  $M = N = 16$时不同算法的误码率性能与信噪比关系
图 7  $M = N = 32$时不同算法的误码率性能与信噪比的关系
1 HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation [C]// IEEE Wireless Communications and Networking Conference . San Francisco: IEEE, 2017: 1–6.
2 HADANI R, MONK A. OTFS: a new generation of modulation addressing the challenges of 5G [EB/OL]. (2018-02-07)[2023-09-20]. https://arxiv.org/abs/1802.02623.
3 HADANI R, RAKIB S, MOLISCH A F, et al. Orthogonal time frequency space (OTFS) modulation for millimeter-wave communications systems [C]// IEEE MTT-S International Microwave Symposium . Honololu: IEEE, 2017: 681–683.
4 RAVITEJA P, HONG Y, VITERBO E, et al Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS[J]. IEEE Transactions on Vehicular Technology, 2018, 68 (1): 957- 961
5 REZAZADEH A, REYHANI A F, JI M, et al. Analysis of discrete-time MIMO OFDM-based orthogonal time frequency space modulation [C]// IEEE International Conference on Communications . Kansas City: IEEE, 2018: 1–6.
6 RAMACHANDRAN M K, CHOCKALINGAM A. MIMO-OTFS in high-Doppler fading channels: signal detection and channel estimation [C]// IEEE Global Communications Conference . Abu Dhabi: IEEE, 2018: 206–212.
7 SHEN W, DAI L, AN J, et al Channel estimation for orthogonal time frequency space (OTFS) massive MIMO[J]. IEEE Transactions on Signal Processing, 2019, 67 (16): 4204- 4217
doi: 10.1109/TSP.2019.2919411
8 SURABHI G D, CHOCKALINGAM A. Low-complexity linear equalization for 2×2 MIMO-OTFS signals [C]// IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications . Atlanta: IEEE, 2020: 1–5.
9 FENG D, ZHENG J, BAI B, et al Generalized index modulation for MIMO-OTFS transmission[J]. IEEE Wireless Communications Letters, 2023, 12 (5): 907- 911
doi: 10.1109/LWC.2023.3250255
10 LI B, BAI Z, GUO J, et al. Generalized spatial modulation based orthogonal time frequency space system [C]// IEEE 94th Vehicular Technology Conference . Norman: IEEE, 2021: 1–5.
11 RAJPOOT K D, MAHESWARAN P. On the performance of generalized spatial-index modulation based orthogonal time frequency space system [C]// National Conference on Communications . Guwahati: IEEE, 2023: 1–6.
12 YANG Y, BAI Z, LIU H, et al. Design and performance analysis of spatial-index modulation based orthogonal time frequency space system [C]// IEEE International Conference on Communications Workshops . Seoul: IEEE, 2022: 922–927.
13 ZOU X, FAN S, CHEN H, et al. Orthogonal time frequency space with generalized spatial modulation [C]// IEEE 95th Vehicular Technology Conference . Helsinki: IEEE, 2022: 1–5.
14 WANG T, FAN S, CHEN H, et al Generalized approximate message passing detector for GSM-OTFS systems[J]. IEEE Access, 2022, 10: 22997- 23007
doi: 10.1109/ACCESS.2022.3153703
15 FAN S, XIAO Y, XIAO L, et al Improved layered message passing algorithms for large-scale generalized spatial modulation systems[J]. IEEE Wireless Communication Letters, 2017, 7 (1): 66- 69
16 FAN S, XIAO Y, YANG P, et al Approximate message passing detector based upon probability sorting for large-scale GSM systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68 (9): 9303- 9307
doi: 10.1109/TVT.2019.2928695
17 WEI L, ZHENG J, LIU Q Approximate message passing detector for index modulation with multiple active resources[J]. IEEE Transactions on Vehicular Technology, 2018, 68 (1): 972- 976
18 ZHANG Z, GONG C, DONG Y, et al. Expectation propagation aided signal detection for uplink massive generalized spatial modulation MIMO systems [C]// IEEE Transactions on Wireless Communications . IEEE, 2022, 21(3): 2006–2018.
19 LI H, LI B, ZHANG T, et al Iterative receiver for orthogonal time frequency space with index modulation via structured prior-based hybrid belief and expectation propagation[J]. China Communications, 2023, 20 (1): 66- 78
doi: 10.23919/JCC.2023.01.006
20 KSCHISCHANG F R, FREY B J, LOELIGER H A Factor graphs and the sum-product algorithm[J]. IEEE Transactions on Information Theory, 2001, 47 (2): 498- 519
doi: 10.1109/18.910572
21 RAVITEJA P, PHAN K T, HONG Y, et al Interference cancellation and iterative detection for orthogonal time frequency space modulation[J]. IEEE Transactions on Wireless Communications, 2018, 17 (10): 6501- 6515
doi: 10.1109/TWC.2018.2860011
[1] 郝静, 杜太行, 江春冬, 陈通海. 调参级联随机共振系统加强策略[J]. 浙江大学学报(工学版), 2017, 51(10): 2084-2092.
[2] 郭锐 刘济林. LDPC码的一种低复杂度BP译码算法[J]. J4, 2008, 42(3): 450-455.