计算机技术、控制工程 |
|
|
|
|
基于离散余弦变换的快速对抗训练方法 |
王晓淼1( ),张玉金1,*( ),张涛2,田瑾1,吴飞1 |
1. 上海工程技术大学 电子电气工程学院,上海 201620 2. 常熟理工学院 计算机科学与工程学院,江苏 常熟 215500 |
|
Fast adversarial training method based on discrete cosine transform |
Xiaomiao WANG1( ),Yujin ZHANG1,*( ),Tao ZHANG2,Jin TIAN1,Fei WU1 |
1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China 2. School of Computer Science and Engineering, Changshu Institute of Technology, Changshu 215500, China |
引用本文:
王晓淼,张玉金,张涛,田瑾,吴飞. 基于离散余弦变换的快速对抗训练方法[J]. 浙江大学学报(工学版), 2024, 58(11): 2230-2238.
Xiaomiao WANG,Yujin ZHANG,Tao ZHANG,Jin TIAN,Fei WU. Fast adversarial training method based on discrete cosine transform. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2230-2238.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.11.004
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I11/2230
|
1 |
金鑫, 庄建军, 徐子恒 轻量化YOLOv5s网络车底危险物识别算法[J]. 浙江大学学报: 工学版, 2023, 57 (8): 1516- 1526 JIN Xin, ZHUANG Jianjun, XU Ziheng Lightweight YOLOv5s network-based algorithm for identifying hazardous objects under vehicles[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (8): 1516- 1526
|
2 |
熊帆, 陈田, 卞佰成, 等 基于卷积循环神经网络的芯片表面字符识别[J]. 浙江大学学报: 工学版, 2023, 57 (5): 948- 956 XIONG Fan, CHEN Tian, BIAN Baicheng, et al Chip surface character recognition based on convolutional recurrent neural network[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (5): 948- 956
|
3 |
刘春娟, 乔泽, 闫浩文, 等 基于多尺度互注意力的遥感图像语义分割网络[J]. 浙江大学学报: 工学版, 2023, 57 (7): 1335- 1344 LIU Chunjuan, QIAO Ze, YAN Haowen, et al Semantic segmentation network for remote sensing image based on multi-scale mutual attention[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (7): 1335- 1344
|
4 |
杨长春, 叶赞挺, 刘半藤, 等 基于多源信息融合的医学图像分割方法[J]. 浙江大学学报: 工学版, 2023, 57 (2): 226- 234 YANG Changchun, YE Zanting, LIU Banteng, et al Medical image segmentation method based on multi-source information fusion[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (2): 226- 234
|
5 |
宋秀兰, 董兆航, 单杭冠, 等 基于时空融合的多头注意力车辆轨迹预测[J]. 浙江大学学报: 工学版, 2023, 57 (8): 1636- 1643 SONG Xiulan, DONG Zhaohang, SHAN Hangguan, et al Vehicle trajectory prediction based on temporal-spatial multi-head attention mechanism[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (8): 1636- 1643
|
6 |
SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks [C]// 2nd International Conference on Learning Representations. Banff: [s. n. ], 2014.
|
7 |
MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks [C]// International Conference on Learning Representations. Vancouver: [s. n.], 2018.
|
8 |
WANG Y, MA X, BAILEY J, et al. On the convergence and robustness of adversarial training [C]// International Conference on Machine Learning . Long Beach: International Machine Learning Society, 2019: 6586-6595.
|
9 |
GOODFELLOW J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples [C]// International Conference on Learning Representation . San Diego: [s. n.], 2015.
|
10 |
WONG E, RICE L, KOLTER J. Z. Fast is better than free: revisiting adversarial training [C]// International Conference on Learning Representations . Addis Ababa, Ethiopia: [s. n.], 2020.
|
11 |
ANDRIUSHCHENKO M, FLAMMARION N. Understanding and improving fast adversarial training [C]// Neural Information Processing Systems . [S. l. ]: Curran Associates, Inc, 2020: 16048-16059.
|
12 |
KIM H, LEE W, LEE J. Understanding catastrophic overfitting in single-step adversarial training [C]// Proceedings of the AAAI Conference on Artificial Intelligence . Vancouver: AAAI Press, 2021: 8119-8127.
|
13 |
SHAFAHI A, NAJIBI M, GHIASI A, et al. Adversarial training for free! [C]// Neural Information Processing Systems . Vancouver: Curran Associates, Inc. , 2019: 3353-3364.
|
14 |
SRIRAMANAN G, ADDEPALLI S, BABURAJ A, et al. Towards efficient and effective adversarial training [C]// Neural Information Processing Systems . [S. l. ]: Curran Associates, Inc. , 2021: 11821-11833.
|
15 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [C]// International Conference on Machine Learning . Lille: MIT Press, 2015: 448-456.
|
16 |
AGARAP F. Deep learning using rectified linear units (ReLU) [EB/OL]. [2023-06-20]. https://arxiv.org/abs/1803.08375.
|
17 |
MIYATO T, KATAOKA T, KOYAMAM M, et al. Spectral normalization for generative adversarial networks [C]// International Conference on Learning Representations . Vancouver: [s. n. ], 2018.
|
18 |
WANG H, WU X, HUANG Z, et al. High-frequency component helps explain the generalization of convolutional neural networks [C]// IEEE Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 8681–8691.
|
19 |
AHMED N, NATARAJAN T, RAO K R. Discrete cosine transform[J]. IEEE Transactions on Computers, 1974, 23 (1): 90- 93
|
20 |
SELVARAJU R. R. COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization [C]// IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 618-626.
|
21 |
KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images [D]. Toronto: University of Toronto, 2009.
|
22 |
CARLINI N, WAGNER D. A. Towards evaluating the robustness of neural networks [C]// IEEE Symposium on Security and Privacy . San Jose: IEEE, 2017: 39–57.
|
23 |
REBUFFI S A, GOWAL S, CALIAN D A, et al. Fixing data augmentation to improve adversarial robustness [EB/OL]. [2023-06-20]. https://arxiv.org/abs/2103.01946.
|
24 |
HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models [C]// Advances in Neural Information Processing Systems . [S. l. ]: Curran Associates, Inc. , 2020: 6840-6851.
|
25 |
ZAGORUYKO S, KOMODAKIS N. Wide residual networks [C]// Proceedings of the British Machine Vision Conference . York: BMVA Press, 2016: 87.1-87.12.
|
26 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas: IEEE Computer Society, 2016: 770–778.
|
27 |
HE K, ZHANG X, REN S, et al. Identity mappings in deep residual networks [C]// European Conference on Computer Vision . Amsterdam: Springer Verlag, 2016: 630–645.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|