Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (5): 1050-1059    DOI: 10.3785/j.issn.1008-973X.2024.05.018
机械工程     
喷水推进器系泊工况性能的数值模拟
冯若凡1,2(),梁天雄1,梁宁1,曹琳琳1,2,*(),吴大转1,2
1. 浙江大学 化工机械研究所,浙江 杭州 310027
2. 浙江省清洁能源与碳中和重点实验室,浙江 嘉兴 314031
Numerical simulation of mooring performance of waterjet propulsion system
Ruofan FENG1,2(),Tianxiong LIANG1,Ning LIANG1,Linlin CAO1,2,*(),Dazhuan WU1,2
1. Institute of Process Equipment, Zhejiang University, Hangzhou 310027, China
2. Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, Jiaxing 314031, China
 全文: PDF(5053 KB)   HTML
摘要:

为了分析系泊工况下喷水推进器的内流特性,在系泊试验的基础上采用基于流体体积法(VOF)的计算方法,对喷水推进器的系泊工况内流场特性进行数值模拟研究. 对比系泊试验数据发现,基于该方法得到的推进器总推力和转矩与试验数据吻合较好,该方法可以较好地模拟喷水推进器自由喷射流场. 从喷水推进器数值模拟结果可知,当叶轮转速增加时,叶轮内部欧拉扬程的增长速度趋于恒定,叶轮的效率增加;叶轮内部熵增较高的区域主要分布在叶轮入口、壁面和叶顶附近,表示该区域流动损失较大,与系泊工况下喷水推进器的进口流道处存在较大程度的流动分离密切相关.

关键词: 喷水推进系泊试验流体体积法内部流动    
Abstract:

A calculation method based on volume of fluid (VOF) was adopted based on mooring tests to numerically simulate the flow field characteristics of waterjet propulsion under mooring conditions in order to analyze the internal flow characteristics of waterjet propulsion under mooring conditions. The comparison with the mooring test data showed that the total thrust and torque obtained based on this method agreed well with the test data. The method can effectively simulate the free jet flow field of the waterjet propulsion. The numerical simulation results of waterjet propulsion show that the growth rate of the Euler’s head inside the impeller tends to be constant as the impeller speed increases, and the efficiency of the impeller increases. The areas with high entropy increase inside the impeller are mainly distributed near the impeller inlet, wall surface and blade tip, where the flow loss is large, which is closely related to the significant flow separation at waterjet duct under mooring conditions.

Key words: waterjet propulsion    mooring test    volume of fluid    internal flow
收稿日期: 2023-05-11 出版日期: 2024-04-26
CLC:  U 644  
基金资助: 国家自然科学基金资助项目(52171326).
通讯作者: 曹琳琳     E-mail: 22227168@zju.edu.cn;caolinlin@zju.edu.cn
作者简介: 冯若凡(2000—),男,硕士生,从事流体机械的研究. orcid.org/0009-0007-7998-6050. E-mail:22227168@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
冯若凡
梁天雄
梁宁
曹琳琳
吴大转

引用本文:

冯若凡,梁天雄,梁宁,曹琳琳,吴大转. 喷水推进器系泊工况性能的数值模拟[J]. 浙江大学学报(工学版), 2024, 58(5): 1050-1059.

Ruofan FENG,Tianxiong LIANG,Ning LIANG,Linlin CAO,Dazhuan WU. Numerical simulation of mooring performance of waterjet propulsion system. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 1050-1059.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.05.018        https://www.zjujournals.com/eng/CN/Y2024/V58/I5/1050

图 1  喷水推进器的结构
参数设计值参数设计值
${n_{\mathrm{r}}}$/(r·min?12 500$D$/mm349
${q_{{m}}}$/(kg·s?11112.5${C_{\mathrm{r}}}$3
${H_{\mathrm{r}}}$/m23.7${C_{\mathrm{s}}}$10
表 1  喷水推进器的参数
图 2  喷水推进器系泊试验台的结构
图 3  喷水推进器系泊试验台的搭建
图 4  数值模拟计算域和边界条件
区域网格单元数
进口流道1 292 914
叶轮2 095 674
导叶1 402 700
喷口附近外流场2 080 789
远离喷口外流场2 678 444
总网格单元数9 550 521
表 2  计算域各部分的网格单元数
图 5  计算域各部分的网格
网格编号N网格编号N
111 507 09237 930 255
29 550 52146 593 938
表 3  不同密度的4套网格的数量
图 6  网格无关性分析
网格${R_{\mathrm{G}}}$${U_{{\text{SN}}}}$/%${U_{\text{V}}}$/%
1,2,3?0.0890.2366.005
2,3,4?0.3560.6646.037
表 4  转矩不确定度的分析结果
图 7  喷泵性能参数的计算结果与试验结果对比
图 8  不同转速正航工况下的喷射流场
图 9  射流长度与扬程的关系
图 10  扬程与叶轮转速的关系
图 11  叶轮的前缘面和尾缘面
图 12  不同流量下叶轮的总体欧拉扬程分布
图 13  不同流量下的叶轮正则化总体欧拉扬程分布
图 14  正则化总体欧拉扬程曲线的斜率分布
图 15  叶轮效率随转速的变化
图 16  泵效率与转速的关系
图 17  叶轮区域的熵生成率
图 18  不同区域的熵生成率占比
图 19  转速为1 485 r/min时的叶轮单位体积熵生成率(span = 0.05、0.50、0.95)
图 20  叶轮的熵生成率增及速度分布(span = 0.5)
图 21  进口流道的熵生成率分布(1 485 r/min)
图 22  进口流道的流速分布(1 485 r/min)
图 23  进口流道的涡分布
图 24  叶轮进口前各截面的流速分布情况(1485 r/min)
图 25  进口流道的速度矢量图
9 JIN Shuanbao, WANG Yongsheng Bench test of the mixed-flow waterjet pump[J]. Journal of Harbin Engineering University, 2014, 35 (1): 115- 118
10 刘承江, 丁江明, 苏永生, 等 喷水推进泵空化性能数值模拟与试验验证[J]. 船舶力学, 2018, 22 (1): 38- 44
LIU Chengjiang, DING Jiangming, SU Yongsheng, et al Numerical simulation of cavitation performance of waterjet pump and test validation[J]. Journal of Ship Mechanics, 2018, 22 (1): 38- 44
11 HUANG R, YE W, DAI Y, et al Investigations into the unsteady internal flow characteristics for a waterjet propulsion system at different cruising speeds[J]. Ocean Engineering, 2020, 203: 107218
doi: 10.1016/j.oceaneng.2020.107218
12 DUERR P, VON ELLENRIEDER K D Scaling and Numerical analysis of nonuniform waterjet pump inflows[J]. IEEE Journal of Oceanic Engineering, 2015, 40 (3): 701- 709
doi: 10.1109/JOE.2014.2339395
13 刘月伟, 潘中永 船用喷水推进器内部流动特性分析[J]. 排灌机械工程学报, 2021, 40 (3): 1- 7
LIU Yuewei, PAN Zhongyong Analysis of internal flow characteristics of marine water-jet propulsion[J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 40 (3): 1- 7
14 郭军, 陈作钢, 戴原星, 等 喷水推进器进流面获取方法及其应用[J]. 上海交通大学学报, 2020, 54 (1): 1- 9
GUO Jun, CHEN Zuogang, DAI Yuanxing, et al Research and application of the capture area obtaining method for waterjet[J]. Journal of Shanghai Jiao Tong University, 2020, 54 (1): 1- 9
15 孟凯旋. 喷水推进器内部流动及推力特性研究[D]. 镇江: 江苏大学, 2019.
MENG Kaixuan. Research on the inner flow and thrust characteristics of water-jet propulsion [D]. Zhenjiang: Jiangsu University, 2019.
16 王雪豹. 喷水推进器内部流动特性研究[D]. 镇江: 江苏大学, 2017.
WANG Xuebao. Research on the inner flow of water-jet propulsion [D]. Zhenjiang: Jiangsu University, 2017.
17 TAKAI T, KANDASAMY M, STERN F Verification and validation study of URANS simulations for an axial waterjet propelled large high-speed ship[J]. Journal of Marine Science and Technology, 2011, 16 (4): 434- 447
doi: 10.1007/s00773-011-0138-x
1 王立祥 船舶喷水推进[J]. 船舶, 1997, (3): 45- 52
WANG Lixiang Waterjet propulsion for ships[J]. Ship and Boat, 1997, (3): 45- 52
2 蔡佑林, 王立祥, 李宁, 等 喷水推进与泵喷推进的对比研究[J]. 大电机技术, 2022, (1): 72- 78
CAI Youlin, WANG Lixiang, LI Ning, et al A compartive study of waterjet propulsion and pumpjet propulsion[J]. Large Electric Machine and Hydraulic Turbine, 2022, (1): 72- 78
3 蔡佑林, 汲国瑞, 冯超, 等 喷水推进推力测试方法[J]. 中国造船, 2022, 63 (4): 107- 114
CAI Youlin, JI Guorui, FENG Chao, et al Thrust measurement method of water jet propulsion[J]. Shipbuilding of China, 2022, 63 (4): 107- 114
4 ESLAMDOOST M, VIKSTROM M A body-force model for waterjet pump simulation[J]. Applied Ocean Research, 2019, 90: 101832
doi: 10.1016/j.apor.2019.05.017
5 ESLAMDOOST A, LARSSON L, BENSOW R Waterjet propulsion and thrust deduction[J]. Journal of Ship Research, 2014, 58 (4): 201- 215
doi: 10.5957/jsr.2014.58.4.201
6 BULTEN N W H, VAN ESCH B P M Fully transient CFD analyses of waterjet pumps[J]. Marine Technology and SNAME News, 2007, 44 (3): 185- 193
doi: 10.5957/mt1.2007.44.3.185
7 曾文德, 王永生, 刘承江 喷水推进混流泵流体动力性能的CFD研究[J]. 中国舰船研究, 2009, 4 (4): 18- 21
ZENG Wende, WANG Yongsheng, LIU Chengjiang Hydrodynamic performance of the jet propulsion mixed-flow pump by CFD simulation[J]. Chinese Journal of Ship Research, 2009, 4 (4): 18- 21
8 HUANG R, ZHANG R, WANG Y, et al Experimental and numerical investigations into flow features in an intake duct for the waterjet propulsion under mooring conditions[J]. Acta Mechanica Sinica, 2021, 37 (5): 826- 843
doi: 10.1007/s10409-021-01097-9
9 靳栓宝, 王永生 混流式喷水推进泵台架试验[J]. 哈尔滨工程大学学报, 2014, 35 (1): 115- 118
18 张恒, 蔡佑林, 林辉, 等. 基于CFD的喷水推进船尾迹场分析[C]//第16届全国水动力学学术会议暨第32届全国水动力学研讨会论文集(下册). 无锡: 海洋出版社, 2021: 307-313.
ZHANG Heng, CAI Youlin, LIN Hui, et al. Analysis of wake induced by waterjet self-propelled ship based on CFD [C]// Proceedings of the 16th National Congress on Hydrodynamics and the 32nd National Conference on Hydrodynamics . Wuxi: China Ocean Press, 2021: 307-313.
19 易文彬, 王永生, 刘承江, 等 浸没式喷水推进自航试验及数值模拟[J]. 船舶力学, 2017, 21 (4): 407- 412
YI Wenbin, WANG Yongsheng, LIU Chengjiang, et al Submerged waterjet self-propulsion test and numerical simulation[J]. Journal of Ship Mechanics, 2017, 21 (4): 407- 412
20 罗晔, 邹璐, 邹早建, 等 喷水推进船模斜拖试验的数值模拟[J]. 水动力学研究与进展, 2022, 37 (3): 408- 414
LUO Ye, ZOU Lu, ZOU Zaojian, et al Numerical simulations of oblique towing tests for waterjet-propelled ship model[J]. Chinese Journal of Hydrodynamics, 2022, 37 (3): 408- 414
21 鲁航, 张富毅, 陈泰然, 等 喷水推进舰艇自航运动数值计算研究[J]. 船舶力学, 2022, 26 (8): 1140- 1149
LU Hang, ZHANG Fuyi, CHEN Tairan, et al Numerical investigation on the self-propelled motion of water jet propelled ship[J]. Journal of Ship Mechanics, 2022, 26 (8): 1140- 1149
22 严鹏. 大流量泵内部非定常流动特性及水力激振研究[D]. 杭州: 浙江大学, 2017.
YAN Peng. Research on unsteady characteristics and flow induced vibration of large flow rate pumps [D]. Hangzhou: Zhejiang University, 2017.
23 任芸, 朱祖超, 吴登昊, 等 基于熵产的离心泵流动损失特性研究[J]. 哈尔滨工程大学学报, 2021, 42 (2): 266- 272
REN Yun, ZHU Zuchao, WU Denghao, et al Flow loss characteristics of a centrifugal pump based on entropy production[J]. Journal of Harbin Engineering University, 2021, 42 (2): 266- 272
24 曹健, 裴吉, 顾延东, 等. 基于熵增理论的混流泵水力损失分析[C]//水力机械学科发展战略研讨会暨第11届全国水力机械及其系统学术年会论文集. 北京: [s. n. ], 2018: 146-156.
CAO Jian, PEI Ji, GU Yandong, et al. Flow losses analysis in a mixed flow pump with annular volute by entropy production evaluation [C]// Seminar on the Development Strategy of Hydraulic Machinery Discipline and the 11th National Annual Conference on Hydraulic Machinery and Systems . Beijing: [s. n. ], 2018: 146-156.
25 李诗徉. 基于循环平稳和数值模拟的泵阀动特性研究与改进设计[D]. 杭州: 浙江大学, 2018.
LI Shiyang. Research and improved design of dynamic characteristics of pumps and valves based on cyclostationarity and numerical simulation [D]. Hangzhou: Zhejiang University, 2018.
26 管洪雨. 离心泵作液力透平的水力性能及内部流动特性研究[D]. 咸阳: 西北农林科技大学, 2022.
GUAN Hongyu. Study on hydraulic performance and internal flow characteristics of centrifugal pump as turbine [D]. Xianyang: Northwest A&F University, 2022.
27 王义乾, 桂南 第三代涡识别方法及其应用综述[J]. 水动力学研究与进展, 2019, 34 (4): 413- 429
WANG Yiqian, GUI Nan A review of the third-generation vortex identification method and its applications[J]. Chinese Journal of Hydrodynamics, 2019, 34 (4): 413- 429
[1] 傅晓云, 雷磊, 杨钢, 李宝仁. 喷水推进型水下滑翔机的水平翼参数配置及定常运动分析[J]. 浙江大学学报(工学版), 2018, 52(8): 1499-1508.
[2] 吴大转, 许斌杰, 武鹏, 李志峰, 王乐勤. 多级离心泵内部间隙流动与泄漏损失[J]. J4, 2011, 45(8): 1393-1398.
[3] 郝宗睿, 王乐勤, 吴大转. 水下喷气推进高速射流场数值研究[J]. J4, 2010, 44(2): 408-412.
[4] 李玉良 潘双夏 赵薇. 推进器与车体相互作用的理论及数值分析[J]. J4, 2007, 41(8): 1277-1282.