土木工程 |
|
|
|
|
球体低速斜撞击成坑规律试验研究 |
戴立夫1,2(),凌道盛1,3,郑建靖1,3,*(),施昌宇1 |
1. 浙江大学 建筑工程学院,浙江 杭州 310058 2. 中交第二航务工程局有限公司 技术中心,湖北 武汉 430040 3. 浙江大学 超重力研究中心,浙江 杭州 310058 |
|
Experimental study on scaling laws of sphere by low-speed oblique impact cratering |
Lifu DAI1,2(),Daosheng LING1,3,Jianjing ZHENG1,3,*(),Changyu SHI1 |
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 2. National Enterprise Technology Center, CCCC Second Harbour Engineering Limited Company, Wuhan 430040, China 3. Center for Hypergravity Experiment and Interdisciplinary Research, Zhejiang University, Hangzhou 310058, China |
引用本文:
戴立夫,凌道盛,郑建靖,施昌宇. 球体低速斜撞击成坑规律试验研究[J]. 浙江大学学报(工学版), 2024, 58(4): 828-837.
Lifu DAI,Daosheng LING,Jianjing ZHENG,Changyu SHI. Experimental study on scaling laws of sphere by low-speed oblique impact cratering. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 828-837.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.04.018
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I4/828
|
1 |
CHESLEY S R, FRENCH A S, DAVIS A B, et al Trajectory estimation for particles observed in the vicinity of (101955) Bennu[J]. Journal of Geophysical Research: Planets, 2020, 125 (9): e2019JE006363
doi: 10.1029/2019JE006363
|
2 |
MIYAMOTO H, YANO H, SCHEERES D J, et al Regolith migration and sorting on asteroid Itokawa[J]. Science, 2007, 316 (5827): 1011- 1014
doi: 10.1126/science.1134390
|
3 |
WALSH K J, JAWIN E R, BALLOUZ R-L, et al Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface[J]. Nature Geoscience, 2019, 12: 242- 246
doi: 10.1038/s41561-019-0326-6
|
4 |
MELOSH H J. Impact cratering: a geologic process [M]. Oxford: Clarendon Press, 1989.
|
5 |
SCHMIDT R M. Meteor crater: energy of formation-implications of centrifuge scaling [C]// Lunar and Planetary Science Conference Proceedings . Houston: [s. n.], 1980, 11: 2099–2128.
|
6 |
HOLSAPPLE K A, SCHMIDT R M On the scaling of crater dimensions: 2. impact processes[J]. Journal of Geophysical Research: Solid Earth, 1982, 87 (B3): 1849- 1870
doi: 10.1029/JB087iB03p01849
|
7 |
HOUSEN K R, SCHMIDT R M, HOLSAPPLE K A Crater ejecta scaling laws: fundamental forms based on dimensional analysis[J]. Journal of Geophysical Research: Solid Earth, 1983, 88 (B3): 2485- 2499
doi: 10.1029/JB088iB03p02485
|
8 |
SCHMIDT R M, HOUSEN K R Some recent advances in the scaling of impact and explosion cratering[J]. International Journal of Impact Engineering, 1987, 5 (1-4): 543- 560
doi: 10.1016/0734-743X(87)90069-8
|
9 |
YAMAMOTO S, WADA K, OKABE N, et al Transient crater growth in granular targets: an experimental study of low velocity impacts into glass sphere targets[J]. Icarus, 2006, 183 (1): 215- 224
doi: 10.1016/j.icarus.2006.02.002
|
10 |
TSUJIDO S, ARAKAWA M, SUZUKI A I, et al Ejecta velocity distribution of impact craters formed on quartz sand: effect of projectile density on crater scaling law[J]. Icarus, 2015, 262: 79- 92
doi: 10.1016/j.icarus.2015.08.035
|
11 |
DE VET S J, DE BRUYN J R Shape of impact craters in granular media[J]. Physical Review E, 2007, 76: 041306
doi: 10.1103/PhysRevE.76.041306
|
12 |
TAKIZAWA S, KATSURAGI H Scaling laws for the oblique impact cratering on an inclined granular surface[J]. Icarus, 2020, 335: 113409
doi: 10.1016/j.icarus.2019.113409
|
13 |
周燕国, 李永刚, 丁海军, 等 砂土液化后再固结体变规律表征与离心模型试验验证[J]. 岩土工程学报, 2014, 36 (10): 1838- 1845 ZHOU Yanguo, LI Yonggang, DING Haijun, et al Characterization of reconsolidation volumetric strain of liquefied sand and validation by centrifuge model tests[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (10): 1838- 1845
doi: 10.11779/CJGE201410011
|
14 |
SEGUIN A, BERTHO Y, GONDRET P Influence of confinement on granular penetration by impact[J]. Physical Review E, 2008, 78: 010301
|
15 |
MAXWELL D E. Simple Z model for cratering, ejection, and the overturned flap [M]// RODDY D J, PEPIN R O, MERRILL R B. Impact and explosion cratering: planetary and terrestrial implications . New York: Pergamon Press, 1977.
|
16 |
ASCHAUER J, KENKMANN T Impact cratering on slopes[J]. Icarus, 2017, 290: 89- 95
doi: 10.1016/j.icarus.2017.02.021
|
17 |
GAULT D E, SONETT C P. Laboratory simulation of pelagic asteroidal impact: atmospheric injection, benthic topography, and the surface wave radiation field [M]// SILVER L T, SCHULTZ P H. Geological implications of impacts of large asteroids and comets on the Earth . [S.l.]: Geological Society of America, 1982.
|
18 |
RICHARDSON J E, MELOSH H J, GREENBERG R J, et al The global effects of impact-induced seismic activity on fractured asteroid surface morphology[J]. Icarus, 2005, 179 (2): 325- 349
doi: 10.1016/j.icarus.2005.07.005
|
19 |
WALSH A M, HOLLOWAY K E, HABDAS P, et al Morphology and scaling of impact craters in granular media[J]. Physical Review Letters, 2003, 91: 104301
doi: 10.1103/PhysRevLett.91.104301
|
20 |
NEFZAOUI E, SKURTYS O Impact of a liquid drop on a granular medium: inertia, viscosity and surface tension effects on the drop deformation[J]. Experimental Thermal and Fluid Science, 2012, 41: 43- 50
doi: 10.1016/j.expthermflusci.2012.03.007
|
21 |
CHAPMAN C R, MCKINNON W B. Cratering of planetary satellites [R]. Tucson: University of Arizona Press, 1986.
|
22 |
HOUSEN K R, HOLSAPPLE K A Ejecta from impact craters[J]. Icarus, 2011, 211 (1): 856- 875
doi: 10.1016/j.icarus.2010.09.017
|
23 |
WÜNNEMANN K, COLLINS G S, MELOSH H J A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets[J]. Icarus, 2006, 180 (2): 514- 527
doi: 10.1016/j.icarus.2005.10.013
|
24 |
ELBESHAUSEN D, WÜNNEMANN K, COLLINS G S Scaling of oblique impacts in frictional targets: implications for crater size and formation mechanisms[J]. Icarus, 2009, 204 (2): 716- 731
doi: 10.1016/j.icarus.2009.07.018
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|