Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (4): 828-837    DOI: 10.3785/j.issn.1008-973X.2024.04.018
土木工程     
球体低速斜撞击成坑规律试验研究
戴立夫1,2(),凌道盛1,3,郑建靖1,3,*(),施昌宇1
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 中交第二航务工程局有限公司 技术中心,湖北 武汉 430040
3. 浙江大学 超重力研究中心,浙江 杭州 310058
Experimental study on scaling laws of sphere by low-speed oblique impact cratering
Lifu DAI1,2(),Daosheng LING1,3,Jianjing ZHENG1,3,*(),Changyu SHI1
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. National Enterprise Technology Center, CCCC Second Harbour Engineering Limited Company, Wuhan 430040, China
3. Center for Hypergravity Experiment and Interdisciplinary Research, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2724 KB)   HTML
摘要:

通过设计球体发射低速撞击试验装置,系统开展不同角度条件下球体撞击干砂靶成坑试验,定量分析撞击速度、角度对撞击坑型的影响,定性分析球体低速斜撞击干砂靶的成坑过程及机理,修正低速斜撞击条件下的成坑相似律. 讨论所修正的相似律在不同撞击条件下的适用性及其在天文学上的应用. 试验结果表明,坑型随撞击速度的增加而增大;坑长、坑体积随撞击角度增加而增加,坑宽随撞击角度的增加先减小再增加,坑深随撞击角度的增加先增加后减小;成坑体积可由撞击角度、撞击速度、球体尺寸、球体密度、重力参数进行缩放得到;低速斜撞击成坑过程中动量和能量共同影响耗散冲击过程.

关键词: 成坑效应低速斜撞击量纲分析相似律试验研究    
Abstract:

By designing a low-speed impact test device for sphere launch, the cratering experiments of sphere impacting dry sand target at different angles were carried out systematically. The influence of impact speed and angle on crater shapes was quantitatively analyzed. The crating process and mechanism of low-speed oblique impact of spheres on dry sand target were analyzed qualitatively, and the scaling laws of cratering under low-speed oblique impact conditions were modified. The applicability of the scaling laws under different impact conditions and its application in astronomy were discussed. Experimental results verify that the crater shape increases with the increase of impact speed, and the crater length and volume increase with the increase of impact angle. The crater width first decreases and then increases with the increase of impact angle, while the crater depth first increases and then decreases with the increase of impact angle. The cavity volume was scaled by parameters such as impact angle, impact speed, sphere diameter, density of sphere and gravity. The dissipative impact process was influenced by both the momentum and energy in the low-speed oblique impact cratering.

Key words: cratering effect    low-speed oblique impact    dimensional analysis    scaling law    experimental study
收稿日期: 2023-04-03 出版日期: 2024-03-27
CLC:  O 303  
基金资助: 国家自然科学基金基础科学中心项目(51988101).
通讯作者: 郑建靖     E-mail: 22012013@zju.edu.cn;zhengjianjing@zju.edu.cn
作者简介: 戴立夫(1999—),男,硕士生,从事撞击成坑试验研究. orcid.org/0009-0002-6753-4739. E-mail:22012013@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
戴立夫
凌道盛
郑建靖
施昌宇

引用本文:

戴立夫,凌道盛,郑建靖,施昌宇. 球体低速斜撞击成坑规律试验研究[J]. 浙江大学学报(工学版), 2024, 58(4): 828-837.

Lifu DAI,Daosheng LING,Jianjing ZHENG,Changyu SHI. Experimental study on scaling laws of sphere by low-speed oblique impact cratering. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 828-837.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.04.018        https://www.zjujournals.com/eng/CN/Y2024/V58/I4/828

图 1  球体发射低速撞击试验装置示意图
试验装置试验材料规格参数
发射系统球形弹丸表面光滑,材质为304不锈钢;直径Di=18 mm,中间有3 mm通孔;质量mi = 23.093 g
PVC透明硬管外径为25 mm,壁厚为2.5 mm;长度分别为1.0、1.5、2.0 m,与球体的摩擦系数约为0.01
涤纶纤维直径为0.2 mm,抗拉强度≥500 MPa
固定支架角度可调整,不锈钢材料
砂靶系统长方体开口容器木制;内径尺寸为480 mm×280 mm×190 mm,壁厚为10 mm
福建标准砂真实密度$ {\rho _t} = $2.62×103 kg/m3,内摩擦角$\theta = $39°,颗粒级配见文献[13]
测量系统角度仪型号为JZC-B2,测量范围为?130°~ 130°,测量精度为±1°
手持式三维激光扫描仪型号为SIMSCAN30,最高精度为0.020 mm,最大扫描面幅为410 mm×400 mm
高速相机型号为Photron,MH6;帧率为2640 帧/s;分辨率为1 280×600
表 1  球体发射低速撞击试验装置的材料及规格参数
图 2  撞击速度计算过程示意图
$\varphi $/(°)L/mn$\varphi $/(°)L/mn
451.05701.55
1.552.05
2.05751.05
501.051.55
1.552.05
2.05900.52
551.050.62
1.550.72
2.050.82
601.050.92
1.551.02
2.051.12
651.051.22
1.551.32
2.051.42
701.051.52
表 2  球体发射低速撞击试验工况
图 3  不同撞击角度的撞击成坑过程
图 4  不同撞击角度的撞击坑型颜色深度图
图 5  撞击坑型等高线图($\varphi = {45^ \circ },\;{v_i} = 3.85{\text{ m/s}}$)
图 6  成坑参数及坐标系定义示意图
图 7  不同撞击速度下的正撞击YOZ平面成坑剖面图
图 8  坑型参数随撞击速度的变化曲线
图 9  不同撞击角度下的XOZ平面成坑剖面图
图 10  不同撞击角度下的YOZ平面成坑剖面图
图 11  坑型参数随撞击角度的变化曲线
图 12  撞击成坑过程XOZ截面示意图
图 13  半经验Z模型中靶体颗粒运动规律示意图
图 14  坑形长度比和深宽比随撞击角度的变化曲线
图 15  撞击动能与成坑尺寸的关系
$\varphi $/(°)k$\varphi $/(°)k
坑长坑体积坑长坑体积
450.300.87650.350.90
500.340.81700.390.88
550.350.74750.390.88
600.351.07900.180.48
表 3  撞击动能与坑型参数的指数值
图 16  成坑体积的相似律关系
图 17  相似律关系在不同试验中的适用性
1 CHESLEY S R, FRENCH A S, DAVIS A B, et al Trajectory estimation for particles observed in the vicinity of (101955) Bennu[J]. Journal of Geophysical Research: Planets, 2020, 125 (9): e2019JE006363
doi: 10.1029/2019JE006363
2 MIYAMOTO H, YANO H, SCHEERES D J, et al Regolith migration and sorting on asteroid Itokawa[J]. Science, 2007, 316 (5827): 1011- 1014
doi: 10.1126/science.1134390
3 WALSH K J, JAWIN E R, BALLOUZ R-L, et al Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface[J]. Nature Geoscience, 2019, 12: 242- 246
doi: 10.1038/s41561-019-0326-6
4 MELOSH H J. Impact cratering: a geologic process [M]. Oxford: Clarendon Press, 1989.
5 SCHMIDT R M. Meteor crater: energy of formation-implications of centrifuge scaling [C]// Lunar and Planetary Science Conference Proceedings . Houston: [s. n.], 1980, 11: 2099–2128.
6 HOLSAPPLE K A, SCHMIDT R M On the scaling of crater dimensions: 2. impact processes[J]. Journal of Geophysical Research: Solid Earth, 1982, 87 (B3): 1849- 1870
doi: 10.1029/JB087iB03p01849
7 HOUSEN K R, SCHMIDT R M, HOLSAPPLE K A Crater ejecta scaling laws: fundamental forms based on dimensional analysis[J]. Journal of Geophysical Research: Solid Earth, 1983, 88 (B3): 2485- 2499
doi: 10.1029/JB088iB03p02485
8 SCHMIDT R M, HOUSEN K R Some recent advances in the scaling of impact and explosion cratering[J]. International Journal of Impact Engineering, 1987, 5 (1-4): 543- 560
doi: 10.1016/0734-743X(87)90069-8
9 YAMAMOTO S, WADA K, OKABE N, et al Transient crater growth in granular targets: an experimental study of low velocity impacts into glass sphere targets[J]. Icarus, 2006, 183 (1): 215- 224
doi: 10.1016/j.icarus.2006.02.002
10 TSUJIDO S, ARAKAWA M, SUZUKI A I, et al Ejecta velocity distribution of impact craters formed on quartz sand: effect of projectile density on crater scaling law[J]. Icarus, 2015, 262: 79- 92
doi: 10.1016/j.icarus.2015.08.035
11 DE VET S J, DE BRUYN J R Shape of impact craters in granular media[J]. Physical Review E, 2007, 76: 041306
doi: 10.1103/PhysRevE.76.041306
12 TAKIZAWA S, KATSURAGI H Scaling laws for the oblique impact cratering on an inclined granular surface[J]. Icarus, 2020, 335: 113409
doi: 10.1016/j.icarus.2019.113409
13 周燕国, 李永刚, 丁海军, 等 砂土液化后再固结体变规律表征与离心模型试验验证[J]. 岩土工程学报, 2014, 36 (10): 1838- 1845
ZHOU Yanguo, LI Yonggang, DING Haijun, et al Characterization of reconsolidation volumetric strain of liquefied sand and validation by centrifuge model tests[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (10): 1838- 1845
doi: 10.11779/CJGE201410011
14 SEGUIN A, BERTHO Y, GONDRET P Influence of confinement on granular penetration by impact[J]. Physical Review E, 2008, 78: 010301
15 MAXWELL D E. Simple Z model for cratering, ejection, and the overturned flap [M]// RODDY D J, PEPIN R O, MERRILL R B. Impact and explosion cratering: planetary and terrestrial implications . New York: Pergamon Press, 1977.
16 ASCHAUER J, KENKMANN T Impact cratering on slopes[J]. Icarus, 2017, 290: 89- 95
doi: 10.1016/j.icarus.2017.02.021
17 GAULT D E, SONETT C P. Laboratory simulation of pelagic asteroidal impact: atmospheric injection, benthic topography, and the surface wave radiation field [M]// SILVER L T, SCHULTZ P H. Geological implications of impacts of large asteroids and comets on the Earth . [S.l.]: Geological Society of America, 1982.
18 RICHARDSON J E, MELOSH H J, GREENBERG R J, et al The global effects of impact-induced seismic activity on fractured asteroid surface morphology[J]. Icarus, 2005, 179 (2): 325- 349
doi: 10.1016/j.icarus.2005.07.005
19 WALSH A M, HOLLOWAY K E, HABDAS P, et al Morphology and scaling of impact craters in granular media[J]. Physical Review Letters, 2003, 91: 104301
doi: 10.1103/PhysRevLett.91.104301
20 NEFZAOUI E, SKURTYS O Impact of a liquid drop on a granular medium: inertia, viscosity and surface tension effects on the drop deformation[J]. Experimental Thermal and Fluid Science, 2012, 41: 43- 50
doi: 10.1016/j.expthermflusci.2012.03.007
21 CHAPMAN C R, MCKINNON W B. Cratering of planetary satellites [R]. Tucson: University of Arizona Press, 1986.
22 HOUSEN K R, HOLSAPPLE K A Ejecta from impact craters[J]. Icarus, 2011, 211 (1): 856- 875
doi: 10.1016/j.icarus.2010.09.017
23 WÜNNEMANN K, COLLINS G S, MELOSH H J A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets[J]. Icarus, 2006, 180 (2): 514- 527
doi: 10.1016/j.icarus.2005.10.013
24 ELBESHAUSEN D, WÜNNEMANN K, COLLINS G S Scaling of oblique impacts in frictional targets: implications for crater size and formation mechanisms[J]. Icarus, 2009, 204 (2): 716- 731
doi: 10.1016/j.icarus.2009.07.018
[1] 龙凡, 王立忠, 李凯, 李玲玲. 舟山黏土和温州黏土灵敏度差别成因[J]. 浙江大学学报(工学版), 2015, 49(2): 218-224.
[2] 金伟良, 王毅. 持续荷载与氯盐作用下钢筋混凝土梁力学性能试验[J]. J4, 2014, 48(2): 221-227.
[3] 董石麟 袁行飞. 索穹顶结构体系若干问题研究新进展[J]. J4, 2008, 42(1): 1-7.
[4] 刘林 俞小莉. 液氮发动机试验及效率分析[J]. J4, 2007, 41(5): 774-779.
[5] 邢丽 赵阳 董石麟 顾磊 傅学怡. 矩形钢管焊接球节点的有限元分析与试验研究[J]. J4, 2006, 40(9): 1559-1563.
[6] 徐铨彪 金伟良 余祖国 严家熹. 混凝土小型空心砌块墙体非线性有限元分析[J]. J4, 2005, 39(6): 863-868.