Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (4): 748-760    DOI: 10.3785/j.issn.1008-973X.2024.04.010
机械工程、能源工程     
层次多叉树映射布尔体廓后验误差的自适应层切
郭洪帅1(),张树有1,伊国栋1,*(),刘晓健1,2,谭建荣1
1. 浙江大学 流体动力基础件与机电系统全国重点实验室,浙江 杭州 310027
2. 浙江大学 宁波科创中心,浙江 宁波,315100
Adaptive slice method based on posterior error of hierarchical N-ary tree mapping Boolean volume contours
Hongshuai GUO1(),Shuyou ZHANG1,Guodong YI1,*(),Xiaojian LIU1,2,Jianrong TAN1
1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
2. Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
 全文: PDF(10572 KB)   HTML
摘要:

在给定构建方向下,层切厚度影响熔融沉积成型零件表面的阶梯效应,层切轮廓及其层次关系是路径规划的研究基础. 为此,提出基于布尔体廓运算的自适应层切方法,在零件模型不同高度层切面上构建局部轮廓拓扑并计算内核域,根据内核点连线与轮廓环的交点,将轮廓环数据映射到一维坐标轴,基于拓扑映射判定轮廓环层次关系. 建立层次关系多叉树,以树高映射体廓特征变化的布尔运算,根据层变阈值设计自适应层厚,通过体廓后验误差估计任意层厚的体积误差,验证自适应层切的有效性. 实例打印及不同自适应层切方法对比结果表明,采用体廓后验误差计算的层切体积误差精度比牙尖高度法的更高;通过控制体廓特征部位的层厚来减小体积误差,有助于提高模型特征部位的表面成型精度.

关键词: 熔融沉积成型自适应层切拓扑映射体积误差层次多叉树体廓后验误差    
Abstract:

Under the given build orientation, slice thickness affects the step effect on the surface of the fused deposition modeling part, and slice contour with its hierarchical relationship is the research basis for path planning. An adaptive slice method based on the operation of Boolean volume contours was proposed. Local contour topology was constructed on different height slice-plane of a part model and the kernel region was calculated. Contour loops were mapped to one-dimensional axis according to the intersections of connection lines between kernel points with the contour loops. The hierarchy relationship of contour loops was determined by topological mapping. N-ary tree was built by the hierarchical relationship. The Boolean operation of volume contour with feature change was mapped by the height of the N-ary tree. Adaptive slice thickness was designed according to the slice variation threshold. Volume error under any slice thickness was estimated by the posterior error of volume contour. The effectiveness of adaptive slice was verified by the volume error. According to printing examples and the comparison of different adaptive slice methods, the calculation accuracy of slice volume error obtained by contour posterior error is higher than that obtained by the method of cusp height. Volume error is reduced by controlling slice thickness on the part of volume contour features, and surface forming accuracy on the region of model features is improved with the volume error reduced.

Key words: fused deposition modeling    adaptive slice    topological mapping    volume error    hierarchical N-ary tree    posterior error of volume contour
收稿日期: 2023-09-01 出版日期: 2024-03-27
CLC:  TP 393  
基金资助: 浙江省重点研发计划项目(2021C01149);浙江省自然科学基金资助项目(LZ22E050008);宁波市自然科学基金资助项目(2021J150).
通讯作者: 伊国栋     E-mail: hsg@zju.edu.cn;ygd@zju.edu.cn
作者简介: 郭洪帅(1989—),男,博士生,从事数字化设计研究. orcid.org/0000-0002-4037-4002. E-mail:hsg@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
郭洪帅
张树有
伊国栋
刘晓健
谭建荣

引用本文:

郭洪帅,张树有,伊国栋,刘晓健,谭建荣. 层次多叉树映射布尔体廓后验误差的自适应层切[J]. 浙江大学学报(工学版), 2024, 58(4): 748-760.

Hongshuai GUO,Shuyou ZHANG,Guodong YI,Xiaojian LIU,Jianrong TAN. Adaptive slice method based on posterior error of hierarchical N-ary tree mapping Boolean volume contours. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 748-760.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.04.010        https://www.zjujournals.com/eng/CN/Y2024/V58/I4/748

图 1  轮廓交点有序连接
图 2  插入点分析
图 3  轮廓环的内核域计算
图 4  轮廓环层次关系(${n_c} \leqslant 1 $)
图 5  轮廓环层次关系(nc>1)
图 6  多实体轮廓环层次关系
图 7  轮廓环层次关系及环向判断流程
图 8  层次多叉树的数据结构
图 9  布尔体廓计算体积误差
图 10  自适应层切流程图
图 11  测试模型及网格结构
图 12  任意轮廓面片集合提取
图 13  轮廓交点计算
图 14  轮廓拓扑重建及面片索引号
图 15  层切可视化及各层轮廓环数据
图 16  轮廓环层次关系判断
轮廓索引12345678
1?=0?100000
2?0=000?100
3+10=00000
4?000=00?10
5?0000=001
6+01000=00
7+000100=0
8+0000?100=
表 1  第10层轮廓环层次关系
KeyhPCDA/mm2L/mm
0004-6-3-5None00
4107+154.19362.303
724None?31.52552.195
6102?129.89164.999
226None+15.40744.937
3101+75.72167.691
123None+18.52515.512
5108?59.89777.513
825None?23.69842.004
表 2  第10层轮廓构建层次多叉树结点信息
图 17  轮廓环层次关系的层次多叉树
图 18  层变系数变化趋势
图 19  不同阈值的自适应层切与均匀层切对比
图 20  不同阈值的体廓后验误差对比
图 21  不同方法体积误差收敛验证对比
图 22  基于布尔体廓计算5000层体积误差
图 23  不同层切方法的实例打印结果
图 24  不同自适应层厚局部放大细节对比结果
层切方法ts/s
t = 0.50u~2.00ut = 0.50u~1.00ut = 0.25u~0.80u
相对体积误差18.34125.29430.142
B样条插值20.21927.83131.752
本研究13.48224.29532.328
表 3  不同层切方法的运行时间对比
t/mm层切方法Ve/mm3$ {{{\overline V}_{\rm{e}}}} $/mm3Vew/mm3LN
IIIIIIII
u = 0.2均匀层切1.2240.9931.1421.12010.841445
0.50u~
2.00u
相对体积误差2.2131.5041.6161.77811.223382
B样条插值2.0581.6721.7911.84011.349395
本研究1.9531.3961.7131.68711.310376
0.50u~
1.00u
相对体积误差1.7391.1041.4331.42511.104398
B样条插值1.6741.0151.3391.34311.237409
本研究1.4211.0471.2571.24210.972391
0.25u~
0.80u
相对体积误差1.0970.8390.9790.9729.641503
B样条插值1.1060.8150.9160.9469.329512
本研究1.0370.8720.9840.9649.785483
表 4  不同方法的自适应层切结果实例对比
图 25  金相电镜实验测量微观形貌特征
1 LAO W, LI M, TJAHJOWIDODO T Variable-geometry nozzle for surface quality enhancement in 3D concrete printing[J]. Additive Manufacturing, 2021, 37: 101638
doi: 10.1016/j.addma.2020.101638
2 ABDULHAMEED O, AL-AHMARI A, AMEEN W, et al Additive manufacturing: challenges, trends, and applications[J]. Advances in Mechanical Engineering, 2019, 11 (2): 1- 27
3 DOLENC A, MÄKELÄ I Slicing procedures for layered manufacturing techniques[J]. Computer-Aided Design, 1994, 26 (2): 119- 126
doi: 10.1016/0010-4485(94)90032-9
4 KULKARNI P, DUTTA D An accurate slicing procedure for layered manufacturing[J]. Computer-Aided Design, 1996, 28 (9): 683- 697
doi: 10.1016/0010-4485(95)00083-6
5 MAO H, KWOK T H, CHEN Y, et al Adaptive slicing based on efficient profile analysis[J]. Computer-Aided Design, 2019, 107: 89- 101
doi: 10.1016/j.cad.2018.09.006
6 ZHAO Z, LUC Z Adaptive direct slicing of the solid model for rapid prototyping[J]. International Journal of Production Research, 2000, 38 (1): 69- 83
doi: 10.1080/002075400189581
7 CHANG C C Direct slicing and G-code contour for rapid prototyping machine of UV resin spray using PowerSOLUTION macro commands[J]. The International Journal of Advanced Manufacturing Technology, 2004, 23: 358- 365
doi: 10.1007/s00170-003-1575-4
8 ZHAO D, GUO W Shape and performance controlled advanced design for additive manufacturing: a review of slicing and path planning[J]. Journal of Manufacturing Science and Engineering, 2020, 142 (1): 010801
doi: 10.1115/1.4045055
9 MINETTO R, VOLPATO N, STOLFI J, et al An optimal algorithm for 3D triangle mesh slicing[J]. Computer-Aided Design, 2017, 92: 1- 10
doi: 10.1016/j.cad.2017.07.001
10 GUO H, XU J, ZHANG S, et al Multi-orientation optimization of complex parts based on model segmentation in additive manufacturing[J]. Journal of Mechanical Science and Technology, 2023, 37: 317- 331
doi: 10.1007/s12206-022-1231-2
11 ADNAN F A, ROMLAY F R M Contour generation algorithm for projection mask stereolithography 3D printing process[J]. IOP Conference Series: Materials Science and Engineering, 2019, 469: 012006
doi: 10.1088/1757-899X/469/1/012006
12 LEE D T, PREPARATA F P An optimal algorithm for finding the kernel of a polygon[J]. Journal of the ACM, 1979, 26 (3): 415- 421
doi: 10.1145/322139.322142
13 张树有, 谭建荣, 彭群生 基于拓扑映射的视图轮廓信息自动获取算法[J]. 中国图象图形学报, 2001, 6 (10): 1016- 1020
ZHANG Shuyou, TAN Jianrong, PENG Qunsheng The algorithm of automatic acquisition of view outline information based on topological mapping[J]. Journal of Image and Graphics, 2001, 6 (10): 1016- 1020
14 WEN H, GAO J, WU R, et al. Research on direct topological structure reconstruction for STL model [C]// 2020 21st International Conference on Electronic Packaging Technology (ICEPT) . Guangzhou: IEEE, 2020: 1-6.
15 CHUANG C M, YAU H T A new approach to z-level contour machining of triangulated surface models using fillet endmills[J]. Computer-Aided Design, 2005, 37 (10): 1039- 1051
doi: 10.1016/j.cad.2004.10.005
16 GUO H, XU J, ZHANG S, et al Build orientation optimization based on weighted analysis of local surface region curvature[J]. Applied Sciences, 2021, 11 (1): 304
17 CHEN Q, XU J, ZHANG S Volumetric adaptive slicing of manifold mesh for rapid prototyping based on relative volume error[J]. Rapid Prototyping Journal, 2021, 28 (3): 606- 626
[1] 白永健,陈赟,张思,陈康,苏世杰. 熔融沉积成型3D打印拉丝缺陷的正交实验研究[J]. 浙江大学学报(工学版), 2022, 56(10): 2093-2103.
[2] 刘晓伟,陈赟,张思,陈康. FDM型增材制造中送丝机构动态监测与识别[J]. 浙江大学学报(工学版), 2021, 55(3): 548-554.
[3] 吴海曦,余忠华,张浩,杨振生,WANG Yan. 面向熔融沉积成型的3D打印机故障声发射监控方法[J]. 浙江大学学报(工学版), 2016, 50(1): 78-84.