计算机与控制工程 |
|
|
|
|
基于个体记忆效应和距离效应的出行目的地识别 |
郑思静1(),陈勇2,朱奕璋1,陈喜群2,*() |
1. 浙江大学 工程师学院 智能交通研究所,浙江 杭州 310058 2. 浙江大学 建筑工程学院 智能交通研究所,浙江 杭州 310058 |
|
Trip destination recognition based on individual memory effect and distance effect |
Sijing ZHENG1(),Yong CHEN2,Yizhang ZHU1,Xiqun CHEN2,*() |
1. Institute of Intelligent Transportation Systems, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China 2. Institute of Intelligent Transportation Systems, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China |
引用本文:
郑思静,陈勇,朱奕璋,陈喜群. 基于个体记忆效应和距离效应的出行目的地识别[J]. 浙江大学学报(工学版), 2024, 58(4): 708-717.
Sijing ZHENG,Yong CHEN,Yizhang ZHU,Xiqun CHEN. Trip destination recognition based on individual memory effect and distance effect. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 708-717.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.04.006
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I4/708
|
1 |
ZHENG C, FAN X, WANG C, et al. GMAN: a graph multi-attention network for traffic prediction [C]// Proceedings of the AAAI Conference on Artificial Intelligence . [S.l.]: AAAI, 2020, 34: 1234–1241.
|
2 |
ZHAO P, LUO A, LIU Y, et al Where to go next: a spatio-temporal gated network for next POI recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34 (5): 2512- 2524
|
3 |
QIAO Y, SI Z, ZHANG Y, et al A hybrid Markov-based model for human mobility prediction[J]. Neurocomputing, 2018, 278: 99- 109
doi: 10.1016/j.neucom.2017.05.101
|
4 |
YAN X Y, ZHAO C, FAN Y, et al Universal predictability of mobility patterns in cities[J]. Journal of The Royal Society Interface, 2014, 11 (100): 20140834
|
5 |
YAN X Y, WANG W X, GAO Z Y, et al Universal model of individual and population mobility on diverse spatial scales[J]. Nature Communications, 2017, 8: 1639
doi: 10.1038/s41467-017-01892-8
|
6 |
FENG J, LI Y, ZHANG C, et al. Deepmove: predicting human mobility with attentional recurrent networks [C]// Proceedings of the 2018 World Wide Web Conference . Loyn: [s.n.], 2018: 1459–1468.
|
7 |
桂志鹏, 杨乐, 丁劲宸, 等. 顾及路口转移偏好和当前移动模式的个体驾驶目的地预测方法[EB/OL]. (2022-03-29)[2024-01-10]. http://doi.org/10.13203/J.whugis20210555.
|
8 |
颜帅. 基于LBS数据的出行目的识别和轨迹预测研究[D]. 南京: 东南大学, 2020. YAN Shuai. A research on travel purpose recognition and trajectory prediction based on LBS data [D]. Nanjing: Southeast University , 2020.
|
9 |
ZHAO Y M, ZENG A, YAN X Y, et al Unified underpinning of human mobility in the real world and cyberspace[J]. New Journal of Physics, 2016, 18: 053025
doi: 10.1088/1367-2630/18/5/053025
|
10 |
SONG C, KOREN T, WANG P, et al Modelling the scaling properties of human mobility[J]. Nature Physics, 2010, 6: 818- 823
doi: 10.1038/nphys1760
|
11 |
GONZÁLEZ M C, HIDALGO C A, BARÁBASI A L Understanding individual human mobility patterns[J]. Nature, 2008, 453: 779- 782
doi: 10.1038/nature06958
|
12 |
ANDERSON J E The gravity model[J]. Annual Review of Economics, 2011, 3 (1): 133- 160
doi: 10.1146/annurev-economics-111809-125114
|
13 |
周艺华, 李广辉, 杨宇光, 等 基于GeoHash的近邻查询位置隐私保护方法[J]. 计算机科学, 2019, 46 (8): 212- 216 ZHOU Yihua, LI Guanghui, YANG Yuguang, et al Location privacy preserving nearest neighbor querying based on GeoHash[J]. Computer Science, 2019, 46 (8): 212- 216
|
14 |
洪文兴, 陈明韬, 刘伊灵, 等 基于GeoHash和HDBSCAN的共享单车停车拥挤区域识别[J]. 厦门大学学报:自然科学版, 2022, 61 (6): 1030- 1037 HONG Wenxing, CHEN Mingtao, LIU Yiling, et al Identification of crowded parking areas for shared bikes based on GeoHash and HDBSCAN[J]. Journal of Xiamen University: Natural Science, 2022, 61 (6): 1030- 1037
|
15 |
JIANG F, LU Z N, GAO M, et al DP-BPR: destination prediction based on Bayesian personalized ranking[J]. Journal of Central South University, 2021, 28: 494- 506
doi: 10.1007/s11771-021-4617-x
|
16 |
ALESSANDRETTI L, SAPIEZYNSKI P, SEKARA V, et al Evidence for a conserved quantity in human mobility[J]. Nature Human Behaviour, 2018, 2: 485- 491
doi: 10.1038/s41562-018-0364-x
|
17 |
MATHEW W, RAPOSO R, MARTINS B. Predicting future locations with hidden Markov models [C]// Proceedings of the 2012 ACM Conference on Ubiquitous Computing . [S.l.]: ACM, 2012, 911–918.
|
18 |
KIM T, YUE Y, TAYLOR S, et al. A decision tree framework for spatiotemporal sequence prediction [C]// Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . [S.l.]: ACM, 2015: 577–586.
|
19 |
ZHOU Y, YANG C, ZHU R Identifying trip ends from raw GPS data with a hybrid spatio-temporal clustering algorithm and random forest model: a case study in Shanghai[J]. Transportation Planning and Technology, 2019, 42 (8): 739- 756
doi: 10.1080/03081060.2019.1675309
|
20 |
DUPRET G, PIWOWARSKI B Model based comparison of discounted cumulative gain and average precision[J]. Journal of Discrete Algorithms, 2013, 18: 49- 62
doi: 10.1016/j.jda.2012.10.002
|
21 |
熊亚军, 谢林柏, 彭力 基于JS散度和潜在特征提取的多块PCA故障监测[J]. 仪表技术与传感器, 2022, (5): 105- 110 XIONG Yajun, XIE Linbo, PENG Li Multiblock PCA fault monitoring based on JS divergence and latent feature extraction[J]. Instrument Technique and Sensor, 2022, (5): 105- 110
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|