Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (3): 518-528    DOI: 10.3785/j.issn.1008-973X.2024.03.009
土木工程、交通工程     
用于夹层梁静动力及屈曲分析的新型组合结构单元
林建平1,2(),陈昆1,潘剑超3,4,王冠楠3,4,冯倩3,*()
1. 华侨大学 土木工程学院,福建 厦门 361021
2. 福建省智慧基础设施与监测重点实验室(华侨大学),福建 厦门 361021
3. 浙江大学 建筑工程学院,浙江 杭州 310058
4. 公路数智养护浙江省工程研究中心,浙江 杭州 310058
New composite finite element for static, dynamic and buckling analysis of sandwich composite beams
Jianping LIN1,2(),Kun CHEN1,Jianchao PAN3,4,Guannan WANG3,4,Qian FENG3,*()
1. College of Civil Engineering, Huaqiao University, Xiamen 361021, China
2. Key Laboratory for Intelligent Infrastructure and Monitoring of Fujian Province, Huaqiao University, Xiamen 361021, China
3. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
4. Zhejiang Provincial Engineering Research Center for Digital and Smart Maintenance of Highway, Hangzhou 310058, China
 全文: PDF(1398 KB)   HTML
摘要:

推导出新型组合结构单元,用于考虑界面滑移的3层部分作用夹层组合梁的静动力及屈曲特性分析. 基于铁木辛柯梁理论,建立考虑夹层梁部分作用效应的能量原理. 针对其受力特性,在节点位移、横截面转角和界面滑移插值时均采用含内部自由度的高阶插值函数,以解决含界面有限元数值分析中常遇到的“滑移锁定”现象. 通过变分原理得到夹层梁的刚度矩阵、质量矩阵以及几何刚度矩阵的显示表达式. 基于MATLAB编译相应夹层结构的有限元程序并验证其准确性. 对不同截面3层夹层组合梁进行不同荷载条件和边界条件下的静动力及屈曲特性分析,并探讨不同夹层组合梁跨高比和不同界面抗剪连接刚度下的计算结果及其误差的变化规律. 所推导的显示表达式新型组合结构单元计算效率高,并便于推广应用于其他有限元程序或商业软件子程序中.

关键词: 夹层组合梁部分作用静动力分析刚度矩阵质量矩阵铁木辛柯梁理论    
Abstract:

A new composite finite element of a three-layer partial-interaction sandwich composite beam with interlayer interfacial slip was derived for static, dynamic and buckling analysis. The partial-interaction effects of the sandwich beam were considered by deriving the energy principle based on the Timoshenko beam theory. Then a high-order interpolation function with internal degrees of freedom was used for determining the nodal displacement, section rotary angle and interfacial slips of the sandwich beam, which could solve the frequent "slip locking" phenomenon in numerical analysis. The explicit stiffness matrix, mass matrix and geometric stiffness matrix of the sandwich beam were obtained through variational principle. The accuracy of the proposed composite finite element for the corresponding sandwich structure was verified through the numerical program which was developed based on the MATLAB software. The static, dynamic and buckling analysis of the three-layer sandwich beam with different cross-sections were then carried out, under the circumstances of various loads and different boundary conditions. The variation laws of the calculation results and their errors of sandwich composite beams with different span-depth ratios and different interfacial shear stiffnesses were also analyzed. The proposed composite finite element with explicit expressions has high calculation efficiency and is easy to be applied into other finite element programs or commercial software subroutines.

Key words: sandwich composite beam    partial-interaction    static and dynamic analysis    stiffness matrix    mass matrix    Timoshenko beam theory
收稿日期: 2023-02-08 出版日期: 2024-03-05
CLC:  TU 398.9  
基金资助: 国家自然科学基金资助项目(52378158, 12322206, 12002303);浙江省‘尖兵’‘领雁’研发攻关计划资助项目(2022C01143);福建省自然科学基金资助项目(2023J01106);浙江大学-浙江交工协同创新联合研究中心资助项目(ZDJG2021002);厦门市自然科学基金资助项目(3502Z20227200).
通讯作者: 冯倩     E-mail: linjianping@hqu.edu.cn;fengqian@zju.edu.cn
作者简介: 林建平(1985―),男,副教授,从事组合结构分析研究. orcid.org/0000-0002-9186-5274. E-mail:linjianping@hqu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
林建平
陈昆
潘剑超
王冠楠
冯倩

引用本文:

林建平,陈昆,潘剑超,王冠楠,冯倩. 用于夹层梁静动力及屈曲分析的新型组合结构单元[J]. 浙江大学学报(工学版), 2024, 58(3): 518-528.

Jianping LIN,Kun CHEN,Jianchao PAN,Guannan WANG,Qian FENG. New composite finite element for static, dynamic and buckling analysis of sandwich composite beams. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 518-528.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.03.009        https://www.zjujournals.com/eng/CN/Y2024/V58/I3/518

图 1  3层夹层组合梁及坐标系示意图
图 2  层间滑移、截面转角和轴向位移的几何关系
图 3  3层组合梁的微小单元
图 4  第e个单元的坐标
图 5  简支和连续3层钢-混组合梁算例
方法单元数us1 /mmus2 /mmwmax /mm
文献[9]0.7782184801.0020736510.91156269
本研究方法4个单元0.7784605941.0022082610.91915070
10个单元0.7782247881.0020771510.91807360
20个单元0.7782188811.0020738810.91804750
100个单元0.7782184871.0020736610.91804580
δ1/%8.99×10?79.98×10?75.94×10?2
表 1  简支边界条件下层间滑移与最大挠度计算结果对比
方法单元数us1 /mmus2 /mmMmax /(kN·m)
文献[9]0.4272312100.5611571318.80241423
本研究方法4个单元0.56146966818.82305118.823051
10个单元0.56141725218.81266418.812664
20个单元0.56141599318.81204318.812043
100个单元0.56141591018.81189118.811891
δ1/%2.85×10?24.61×10?25.04×10?2
表 2  连续边界条件下层间滑移与最大弯矩计算结果对比
图 6  简支边界条件下最大挠度、最大转角和层间滑移相对误差随单元数的变化
图 7  变形随抗剪刚度的变化
图 8  最大挠度相对误差随抗剪刚度的变化
图 9  2种梁理论下跨中最大挠度的相对误差
阶次ω/Hzδ4/%Pcr/kNδ4/%
ABAQUS本研究方法ABAQUS本研究方法
119.12919.2290.521865.41881.20.85
268.90969.5820.986104.56180.91.25
3149.130151.4901.5812885.013096.01.64
4257.370263.4402.3621986.022445.02.09
5390.420403.2203.2833085.033947.02.61
表 3  自振频率与屈曲荷载计算结果对比
图 10  自振频率与屈曲荷载计算结果的相对误差
图 11  两跨连续夹层组合梁示意图
图 12  两跨连续夹层组合梁的最大挠度及相对误差
1 ELLOBODY E, YOUNG B Performance of shear connection in composite beams with profiled steel sheeting[J]. Journal of Constructional Steel Research, 2006, 62 (7): 682- 694
doi: 10.1016/j.jcsr.2005.11.004
2 LIEW J Y R, YAN J, HUANG Z Steel-concrete-steel sandwich composite structures-recent innovations[J]. Journal of Constructional Steel Research, 2017, 130: 202- 221
doi: 10.1016/j.jcsr.2016.12.007
3 严加宝, 张令心, 林旭川, 等 双钢板-混凝土组合防护结构受力机理研究综述[J]. 自然灾害学报, 2020, 29 (6): 1- 12
YAN Jiabao, ZHANG Lingxin, LIN Xuchuan, et al Review on mechanisms of double skin composite protective structures[J]. Journal of Natural Disasters, 2020, 29 (6): 1- 12
4 CORTES F, SARRIA I, YIGIT A S. Dynamic analysis of three-layer sandwich beams with thick viscoelastic damping core for finite element applications [EB/OL]. [2023−01−01]. https://downloads.hindawi.com/journals/sv/2015/736256.pdf.
5 胡霖远, 陈伟球, 张治成, 等 基于Zig-zag理论的波形钢腹板梁自由振动分析[J]. 浙江大学学报:工学版, 2019, 53 (3): 503- 511
HU Linyuan, CHEN Weiqiu, ZHANG Zhicheng, et al Free vibration analysis of concrete beams with corrugated steel webs based on Zig-zag theory[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (3): 503- 511
6 黄小坤, 段树坤, 刘强, 等 结构胶侧扭约束玻璃柱轴压承载力设计方法研究[J]. 工程力学, 2021, 38 (3): 122- 131
HUANG Xiaokun, DUAN Shukun, LIU Qiang, et al A study on the design method for axial compressive resistance of glass columns laterally and torsionally constrained by structural adhesive[J]. Engineering Mechanics, 2021, 38 (3): 122- 131
doi: 10.6052/j.issn.1000-4750.2020.04.0280
7 NEWMARK N Tests and analysis of composite beams with incomplete interaction[J]. Proceedings of the Society for Experimental Stress Analysis, 1951, 9 (1): 75- 92
8 CHUI Y H, BARCLAY D W Analysis of three-layer beams with non-identical layers and semi-rigid connections[J]. Canadian Journal of Civil Engineering, 1998, 25 (2): 271- 276
doi: 10.1139/l97-093
9 SOUSA JR B M, DA SILVA A R Analytical and numerical analysis of multilayered beams with interlayer slip[J]. Engineering Structures, 2010, 32 (6): 1671- 1680
doi: 10.1016/j.engstruct.2010.02.015
10 SOUSA JR J B M Exact finite elements for multilayered composite beam-columns with partial interaction[J]. Computers and Structures, 2013, 123: 48- 57
doi: 10.1016/j.compstruc.2013.04.008
11 KEO P, NGUYEN Q, SOMJA H, et al Derivation of the exact stiffness matrix of shear-deformable multi-layered beam element in partial interaction[J]. Finite Elements in Analysis and Design, 2016, 112: 40- 49
doi: 10.1016/j.finel.2015.12.004
12 LIN J, LIU X, WANG Y, et al Static and dynamic analysis of three-layered partial-interaction composite structures[J]. Engineering Structures, 2022, 252: 113581
doi: 10.1016/j.engstruct.2021.113581
13 LIN J, CHEN K, ZHANG L, et al Composite finite elements on dynamic and buckling responses of composite beams with independent rotations[J]. Structures, 2022, 45: 707- 720
14 RANZI G Locking problems in the partial interaction analysis of multi-layered composite beams[J]. Engineering Structures, 2008, 30 (10): 2900- 2911
doi: 10.1016/j.engstruct.2008.04.006
15 XU R, WANG G Variational principle of partial-interaction composite beams using timoshenko's beam theory[J]. International Journal of Mechanical Sciences, 2012, 60 (1): 72- 83
doi: 10.1016/j.ijmecsci.2012.04.012
16 XU R, WU Y Static, dynamic, and buckling analysis of partial interaction composite members using timoshenko's beam theory[J]. International Journal of Mechanical Sciences, 2007, 49 (10): 1139- 1155
17 XU R, WANG G Bending solutions of the timoshenko partial-interaction composite beams using euler-bernoulli solutions[J]. Journal of Engineering Mechanics, 2013, 139 (12): 1881- 1885
doi: 10.1061/(ASCE)EM.1943-7889.0000614
18 胡海昌. 弹性力学的变分原理及其应用[M]. 北京: 科学出版社, 1981.
[1] 张年文, 童根树. 梁元修正拉格朗日法的刚体检验和节点力计算[J]. J4, 2010, 44(10): 1992-1997.