Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (2): 413-425    DOI: 10.3785/j.issn.1008-973X.2024.02.019
交通工程、土木工程     
基于改进修正动员强度设计方法的软土基坑围护结构侧移预测
肖衎1(),张世民1,2,丁智2,3,*(),范晓真2,3,张霄1
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 浙大城市学院 土木工程系,浙江 杭州 310015
3. 浙江省城市盾构隧道安全建造与智能养护重点实验室,浙江 杭州 310015
Prediction of lateral displacement of retaining structure of soft soil foundation pit based on improved modified mobilizable strength design method
Kan XIAO1(),Shimin ZHANG1,2,Zhi DING2,3,*(),Xiaozhen FAN2,3,Xiao ZHANG1
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Department of Civil Engineering, Hangzhou City University, Hangzhou 310015, China
3. Key Laboratory of Safe Construction and Intelligent Maintenance for Urban Shield Tunnels of Zhejiang Province, Hangzhou 310015, China
 全文: PDF(1994 KB)   HTML
摘要:

为了进一步优化软土地区基坑设计方法,提升基坑支护体系的安全性与经济性,在已有研究的基础上,根据工程实践经验,修正了MSD法和其改进方法(MMSD法). 基于圆弧滑动模式提出更符合实际的塑性变形机制,引入基坑开挖主要影响深度来量化位移场尺寸. 理论计算方法适用于分析软黏土地区多支点式柔性支护结构的基坑开挖全过程的变形预测. 将该方法的计算结果与6个上海地区的基坑工程实测数据、弹性支点法的计算结果及MMSD法的计算结果进行对比分析. 对不同开挖阶段的围护结构最大侧移和最大侧移深度进行参数分析. 结果表明,利用该方法得到的预测值与实测值吻合效果更佳,预测精度高于弹性支点法和MMSD法,证明了该方法的实用性.

关键词: 能量法增量法墙体侧移软黏土多支撑开挖    
Abstract:

The MSD method and its improved method (MMSD method) were modified based on the existing research and the engineering practice experience in order to further optimize the design method of foundation pit in soft soil area and improve the safety and economy of foundation pit support system. A more realistic plastic deformation mechanism was proposed based on the circular sliding mode, and the main influence depth of foundation pit excavation was introduced to quantify the size of displacement field. The method is suitable for analyzing the deformation prediction of the whole process of foundation pit excavation of multi-fulcrum flexible supporting structure in soft clay area. The calculation results of the method were compared with the measured data of six foundation pit projects in Shanghai, the calculation results of elastic fulcrum method and the calculation results of MMSD method. The parameter analysis of the maximum lateral displacement and the maximum lateral displacement depth of the retaining structure in different excavation stages was conducted. Results showed that the predicted value of the method accorded with the measured value, and the prediction accuracy was higher than that of the elastic fulcrum method and MMSD method. The practicability of this method was proved.

Key words: energy method    incremental method    wall deflection    soft clay    multi-support excavation
收稿日期: 2023-07-01 出版日期: 2024-01-23
CLC:  TU 47  
基金资助: 浙江省“尖兵”“领雁”研发攻关计划资助项目(2023C03182);国家自然科学基金资助项目(52178400,52278418);浙江省自然科学基金资助项目(LHZ20E080001,LQ23E080002);浙江省重点研发计划资助项目(2020C01102).
通讯作者: 丁智     E-mail: 22112197@zju.edu.cn;dingz@zucc.edu.cn
作者简介: 肖衎(1999— ),男,硕士生,从事岩土工程的研究. orcid.org/0009-0001-4347-7648. E-mail:22112197@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
肖衎
张世民
丁智
范晓真
张霄

引用本文:

肖衎,张世民,丁智,范晓真,张霄. 基于改进修正动员强度设计方法的软土基坑围护结构侧移预测[J]. 浙江大学学报(工学版), 2024, 58(2): 413-425.

Kan XIAO,Shimin ZHANG,Zhi DING,Xiaozhen FAN,Xiao ZHANG. Prediction of lateral displacement of retaining structure of soft soil foundation pit based on improved modified mobilizable strength design method. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 413-425.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.02.019        https://www.zjujournals.com/eng/CN/Y2024/V58/I2/413

图 1  悬臂塑性变形机制
图 2  MMSD法中的基坑塑性变形机制(宽基坑)
图 3  MMSD法中的基坑塑性变形机制(窄基坑)
图 4  Terzaghi破坏机制
图 5  MMSD法中重叠的位移场
图 6  圆弧滑动破坏机制
图 7  改进后的基坑塑性变形机制
图 8  可能的沉降影响区和破坏模式
图 9  基于主动破坏模式的主要影响区
图 10  改进后重叠的位移场
图 11  土体动员抗剪强度分区
基坑Tw/mmEI/(kN·m?2)Hw/mHe/mLp/mB/mHi/m
西藏南路8001 280 00038.020.6169.022.81.56.510.814.417.5
浦东南路600540 00027.017.3196.020.80.64.27.811.414.5
浦电路600540 00026.516.5194.020.41.04.27.211.114.2
古北路8001 280 00026.014.5149.517.50.43.97.410.9
兴业大厦8001 280 00031.2512.480800.13.97.110.4
上海南站8001 280 00027.510.954001003.08.5
表 1  各基坑设计参数的汇总
图 12  上海K0固结软土试样的归一化应力应变关系[18]
图 13  改进MMSD法的计算流程
图 14  窄基坑计算值与实测值的对比
图 15  宽基坑计算值与实测值的对比
图 16  最大侧移的预测准确性
图 17  最大侧移深度的预测准确性
1 郑刚 软土地区基坑工程变形控制方法及工程应用[J]. 岩土工程学报, 2022, 44 (1): 1- 36
ZHENG Gang Method and application of deformation control of excavations in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2022, 44 (1): 1- 36
doi: 10.11779/CJGE202201001
2 郑刚, 朱合华, 刘新荣, 等. 基坑工程与地下工程安全及环境影响控制 [J]. 土木工程学报, 2016, 49(6): 1-24.
ZHENG Gang, ZHU Hehua, LIU Xinrong, et al. Control of safety of deep excavations and underground engineering and its impact on surrounding environment [J]. China Civil Engineering Journal , 2016, 49(6): 1-24.
3 丁智, 王达, 王金艳, 等 浙江地区软弱土深基坑变形特点及预测分析[J]. 岩土力学, 2015, 36 (Supple.1): 506- 512
DING Zhi, WANG Da, WANG Jinyan, et al Deformation characteristics of Zhejiang soft soil deep foundation pits and their predictive analysis[J]. Rock and Soil Mechanics, 2015, 36 (Supple.1): 506- 512
4 CHENG X S, ZHENG G, DIAO Y, et al Experimental study of the progressive collapse mechanism of excavations retained by cantilever piles[J]. Canadian Geotechnical Journal, 2016, 54 (4): 574- 587
5 LI M G, ZHANG Z J, CHEN J J, et al Zoned and staged construction of an underground complex in Shanghai soft clay[J]. Tunnelling and Underground Space Technology, 2017, 67: 187- 200
doi: 10.1016/j.tust.2017.04.016
6 木林隆, 黄茂松 基于小应变特性的基坑开挖对邻近桩基影响分析方法[J]. 岩土工程学报, 2014, 36 (Supple.2): 304- 310
MU Linlong, HUANG Maosong Small-strain behavior-based method for effect of excavations on adjacent pile foundations[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (Supple.2): 304- 310
doi: 10.11779/CJGE2014S2054
7 PITTHAYA J, SITTISAK J, PORNKASEM J, et al Numerical analysis of lateral movements and strut forces in deep cement mixing walls with top-down construction in soft clay[J]. Computers and Geotechnics, 2017, 88: 174- 181
doi: 10.1016/j.compgeo.2017.03.018
8 SHI J W, ZHANG X, CHEN Y H, et al Numerical parametric study of countermeasures to alleviate basement excavation effects on an existing tunnel[J]. Tunnelling and Underground Space Technology, 2018, 2018 (72): 145- 153
9 张雯超, 史培新, 刘维, 等 基于改进KNN与基坑参数对地连墙变形预测研究[J]. 华中科技大学学报:自然科学版, 2021, 49 (9): 101- 106
ZHANG Wenchao, SHI Peixin, LIU Wei, et al Research on deformation prediction of diaphragm wall based on improved KNN and parameters of subway deep excavation[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2021, 49 (9): 101- 106
10 洪宇超, 钱建固, 叶源新, 等 基于时空关联特征的CNN-LSTM模型在基坑工程变形预测中的应用[J]. 岩土工程学报, 2021, 43 (Supple.2): 108- 111
HONG Yuchao, QIAN Jiangu, YE Yuanxin, et al Application of CNN-LSTM model based on spatiotemporal correlation characteristics in deformation prediction of excavation engineering[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (Supple.2): 108- 111
11 郭健, 陈健, 胡杨 基于小波智能模型的地铁车站基坑变形时序预测分析[J]. 岩土力学, 2020, 41 (Supple.1): 299- 304
GUO Jian, CHEN Jian, HU Yang Time series prediction for deformation of the metro foundation pit based on wavelet intelligence model[J]. Rock and Soil Mechanics, 2020, 41 (Supple.1): 299- 304
12 OSMAN A S, BOLTON M D A new design method for retaining walls in clay[J]. Canadian Geotechnical Journal, 2004, 41 (3): 451- 466
doi: 10.1139/t04-003
13 OSMAN A S, BOLTON M D Simple plasticity-based prediction of the undrained settlement of shallow circular foundations on clay[J]. Géotechnique, 2005, 55 (6): 435- 447
14 OSMAN A S, BOLTON M D, MAIR R J Predicting 2D ground movements around tunnels in undrained clay[J]. Géotechnique, 2006, 56 (9): 597- 604
15 OSMAN A S, BOLTON M D Ground movement predictions for braced excavations in undrained clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132 (4): 465- 477
doi: 10.1061/(ASCE)1090-0241(2006)132:4(465)
16 KLAR A, OSMAN A S Load–displacement solutions for piles and shallow foundations based on deformation fields and energy conservation[J]. Géotechnique, 2008, 58 (7): 581- 589
17 LAM S Y, BOLTON M D Energy conservation as a principle underlying mobilizable strength design for deep excavations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137 (11): 1062- 1074
doi: 10.1061/(ASCE)GT.1943-5606.0000510
18 WANG L Z, LIU Y J, HONG Y, et al Predicting deformation of multipropped excavations in soft clay with a modified mobilizable strength design (MMSD) method[J]. Computers and Geotechnics, 2018, 104: 54- 68
doi: 10.1016/j.compgeo.2018.07.018
19 WANG L Z, LONG F Base stability analysis of braced deep excavation in undrained anisotropic clay with upper bound theory[J]. Science China Technological Sciences, 2014, 57 (9): 1865- 1876
doi: 10.1007/s11431-014-5613-2
20 O'ROURKE T D. Base stability and ground movement prediction for excavations in soft clay [C] // Retaining Structures . London: Thomas Telford, 1993: 657-686.
21 TERZAGHI K. Theoretical soil mechanics [M]. New York: Wiley, 1943: 26-65.
22 黄茂松, 李弈杉, 唐震, 等 基于不排水强度的黏土基坑抗隆起稳定计算方法[J]. 岩土工程学报, 2020, 42 (9): 1577- 1585
HUANG Maosong, LI Yishan, TANG Zhen, et al Analysis method for basal stability of braced excavations in clay based on undrained shear strength[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (9): 1577- 1585
doi: 10.11779/CJGE202009001
23 HSIEH P G, OU C Y, LIU H T Basal heave analysis of excavations with consideration of anisotropic undrained strength of clay[J]. Canadian Geotechnical Journal, 2008, 45 (6): 788- 799
doi: 10.1139/T08-006
24 王洪新 基坑的尺寸效应及考虑开挖宽度的抗隆起稳定安全系数计算方法[J]. 岩土力学, 2016, 37 (Supple.2): 433- 441
WANG Hongxin Size effect of foundation pits and calculation method of safety factor of heave-resistant stability considering excavation width[J]. Rock and Soil Mechanics, 2016, 37 (Supple.2): 433- 441
25 周建, 蔡露, 罗凌晖, 等 各向异性软土基坑抗隆起稳定极限平衡分析[J]. 岩土力学, 2019, 40 (12): 4848- 4856
ZHOU Jian, CAI Lu, LUO Linghui, et al Limit equilibrium analysis on stability against basal heave of excavation in anisotropic soft clay[J]. Rock and Soil Mechanics, 2019, 40 (12): 4848- 4856
26 HUANG M S, TANG Z, YUAN J Basal stability analysis of braced excavations with embedded walls in undrained clay using the upper bound theorem[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2018, 79: 231- 241
27 HSIEH P G, OU C Y Shape of ground surface settlement profiles caused by excavation[J]. Canadian Geotechnical Journal, 1998, 35 (6): 1004- 1017
doi: 10.1139/t98-056
28 KUNG G T, JUANG C H, HSIAO E C, et al Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133 (6): 731- 747
doi: 10.1061/(ASCE)1090-0241(2007)133:6(731)
29 OU C Y, HSIEH P G A simplified method for predicting ground settlement profiles induced by excavation in soft clay[J]. Computers and Geotechnics, 2011, 38 (8): 987- 997
doi: 10.1016/j.compgeo.2011.06.008
30 WANG Z W, CHARLES W, LIU G B Characteristics of wall deflections and ground surface settlements in Shanghai[J]. Canadian Geotechnical Journal, 2005, 42 (5): 1243- 1254
doi: 10.1139/t05-056
31 徐中华. 上海地区支护结构与主体地下结构相结合的深基坑变形性状研究[D]. 上海: 上海交通大学, 2007.
XU Zhonghua. Deformation behavior of deep excavations supported by permanent structure in shanghai soft deposit [D]. Shanghai: Shanghai Jiao Tong University, 2007.
32 NG C, HONG Y, LIU G, et al Ground deformations and soil–structure interaction of a multi-propped excavation in Shanghai soft clays[J]. Géotechnique, 2012, 62 (10): 907- 921
[1] 郑晴晴,夏唐代,张孟雅,周飞. 间歇性循环荷载下原状淤泥质软黏土应变预测模型[J]. 浙江大学学报(工学版), 2020, 54(5): 889-898.
[2] 李忠超, 陈仁朋, 孟凡衍, 叶俊能. 软黏土中盾构掘进地层变形与掘进参数关系[J]. 浙江大学学报(工学版), 2015, 49(7): 1268-1275.
[3] 李忠超, 陈仁朋, 孟凡衍, 叶俊能. 软黏土中盾构掘进地层变形与掘进参数关系[J]. 浙江大学学报(工学版), 2015, 49(4): 2-3.
[4] 陈卓,周建,温晓贵,陶燕丽. 电极反转对电渗加固效果的试验研究[J]. J4, 2013, 47(9): 1579-1584.
[5] 郭林, 蔡袁强, 谷川, 王军. 循环荷载下软黏土回弹和累积变形特性[J]. J4, 2013, 47(12): 2111-2117.
[6] 沈扬 周建 张金良 龚晓南. 主应力轴循环旋转下原状软黏土临界性状研究[J]. J4, 2008, 42(1): 77-82.