Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (2): 325-333    DOI: 10.3785/j.issn.1008-973X.2024.02.011
计算机技术、通信技术     
硅基集成光开关阵列的高速驱动控制电路设计
张毅远1(),武雅婷1,米光灿2,黄莹1,储涛1,*()
1. 浙江大学 信息与电子工程学院,浙江 杭州 310027
2. 华为技术有限公司,广东 东莞 523145
Design of high-speed driving control circuit for integrated silicon photonic switch matrix
Yiyuan ZHANG1(),Yating WU1,Guangcan MI2,Ying HUANG1,Tao CHU1,*()
1. College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
2. Huawei Technologies Limited Company, Dongguan 523145, China
 全文: PDF(1631 KB)   HTML
摘要:

通过分析光开关单元的物理结构,提出等效电学模型,用于模拟光开关单元的瞬态响应. 基于该模型,针对光开关阵列设计高速驱动控制电路,结合仿真探究电压尖峰对光开关单元瞬态响应的影响. 系统测试结果表明,驱动电路施加的电压信号的上升/下降时间为1.7/1.6 ns,能够满足高速光开关纳秒级切换速度的需求. 在该驱动电路的配合下,光开关阵列的切换时间为2.1~5.9 ns,实现了较先进的高速光交换系统.

关键词: 光通信光互连硅基光子学硅基光开关驱动控制电路    
Abstract:

An equivalent electrical model was proposed for simulating the transient responses of a photonic switch cell by analyzing its physical structure. A high-speed driving control circuit was designed for a photonic switch matrix based on the model, and the effect of voltage spikes on the transient response of photonic switch cell was analyzed by simulation. The test results show that the rise/fall time of the signal supplied by the driving circuit are 1.7/1.6 ns, which meets the requirements for nanosecond-level switching of high-speed photonic switches. The switching time of the photonic switch matrix reaches 2.1?5.9 ns with the assistance of the driving control circuits, realizing a high-speed optical switching system.

Key words: optical communication    optical interconnection    silicon photonics    silicon photonic switch    driving control circuit
收稿日期: 2023-05-23 出版日期: 2024-01-23
CLC:  TN 41  
基金资助: 国家自然科学基金资助项目(62035001)
通讯作者: 储涛     E-mail: zhang_yiyuan@zju.edu.cn;chutao@zju.edu.cn
作者简介: 张毅远(1996—),男,硕士生,从事高速/射频电路的设计. orcid.org/0009-0009-9522-6216. E-mail:zhang_yiyuan@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张毅远
武雅婷
米光灿
黄莹
储涛

引用本文:

张毅远,武雅婷,米光灿,黄莹,储涛. 硅基集成光开关阵列的高速驱动控制电路设计[J]. 浙江大学学报(工学版), 2024, 58(2): 325-333.

Yiyuan ZHANG,Yating WU,Guangcan MI,Ying HUANG,Tao CHU. Design of high-speed driving control circuit for integrated silicon photonic switch matrix. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 325-333.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.02.011        https://www.zjujournals.com/eng/CN/Y2024/V58/I2/325

图 1  光开关单元的基本结构和工作状态
图 2  光开关单元等效电学模型的示意图
图 3  光开关单元伏安特性的仿真结果
图 4  光开关切换过程中相移臂电流和有效折射率的变化
图 5  等效电学模型和光开关单元的瞬态特性对比
图 6  等效电学模型的瞬态响应分析
图 7  光开关阵列高速驱动控制电路的系统框图
图 8  等效电路模型作为负载的电路瞬态响应仿真结果
图 9  斜坡信号及其激励下的电容电压响应分析
图 10  不同激励信号下的电容电压响应情况
图 11  不同激励信号下光开关单元的有效折射率变化
图 12  驱动电路及光开关阵列的芯片封装
图 13  8×8光开关阵列的示意图
图 14  静态/瞬态测试系统框图
图 15  待测光开关单元的静态测试结果
图 16  系统瞬态响应的测试结果
切换单元光路传输情况tr, tf /
ns
切换单元光路传输情况tr, tf /
ns
S310→0'/1'2.8, 3.1所有单元0→0'/7'3.1, 3.3
1→1'/0'2.7, 2.31→1'/6'2.9, 2.4
S320→2'/3'2.5, 4.12→2'/5'2.9, 4.8
3→3'/2'3.8, 2.43→3'/4'4.2, 2.5
S330→4'/5'2.2, 4.64→4'/3'2.6, 4.7
5→5'/4'4.5, 2.15→5'/2'4.8, 2.6
S340→6'/7'5.3, 2.46→6'/1'5.9, 2.4
7→7'/6'2.2, 4.37→7'/0'2.1, 4.7
表 1  光开关阵列在不同路径下的工作情况
1 CHU T, QIAO L, TANG W. High-speed 8×8 electro-optic switch matrix based on silicon PIN structure waveguides [C]// IEEE 12th International Conference on Group IV Photonics. Vancouver: IEEE, 2015: 123-124.
2 SIEW S Y, LI B, GAO F, et al Review of silicon photonics technology and platform development[J]. Journal of Lightwave Technology, 2021, 39 (13): 4374- 4389
doi: 10.1109/JLT.2021.3066203
3 WANG Y, WANG X, YUAN J, et al Monolithic III-nitride photonic circuit towards on-chip optical interconnection[J]. Applied Physics Express, 2018, 11 (12): 122201
4 BIBERMAN A, BERGMAN K Optical interconnection networks for high-performance computing systems[J]. Reports on Progress in Physics, 2012, 75 (4): 046402
5 XUE X, CALABRETTA N Nanosecond optical switching and control system for data center networks[J]. Nature Communications, 2022, 13 (1): 2257
6 HU G, QI Z, YUN B, et al High performance ridge type PLZT optical switch with offset upper electrode[J]. IEEE Photonics Technology Letters, 2015, 27 (21): 2257- 2259
7 QIAO L, TANG W, CHU T. Ultra-large-scale silicon optical switches [C]// IEEE 13th International Conference on Group IV Photonics. Shanghai: IEEE, 2016: 1-2.
8 SUZUKI K, KONOIKE R, SUDA S, et al. Low-loss, low-crosstalk, and large-scale silicon photonics switch [C]// Optical Fiber Communications Conference and Exhibition. San Diego: OSA, 2019: 1-3.
9 MORI Y, SATO K-I. Large-scale optical switch architectures for intra-datacentre networks [C]// European Conference on Optical Communications. Belgium: IEEE, 2020: 1-4.
10 SEOK T J, QUACK N, HAN S, et al Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers[J]. Optica, 2016, 3 (1): 64- 70
11 ASSEFA S, SHANK S, GREEN W, et al. A 90nm CMOS integrated nano-photonics technology for 25Gbps WDM optical communications applications [C]// International Electron Devices Meeting. San Francisco: IEEE, 2012, 33(8): 1-3.
12 LEE B G, RYLYAKOV A V, GREEN W M J, et al Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits[J]. Journal of Lightwave Technology, 2014, 32 (4): 743- 751
13 DUPUIS N, PROESEL J E, AINSPAN H, et al Nanosecond photonic switch architectures demonstrated in an all-digital monolithic platform[J]. Optics Letters, 2019, 44 (15): 3610- 3612
14 LEE B G, GREEN W M J, RYLYAKOV A V, et al. Monolithically integrated photonic switches driven by digital CMOS [C]// Conference on Lasers and Electro-Optics. Munich: OSA, 2013: 1-2.
15 JIANG J, GOODWILL D J, DUMAIS P, et al. 16x16 silicon photonic switch with nanosecond switch time and low-crosstalk architecture [C]// 45th European Conference on Optical Communication. Dublin: IEEE, 2019: 1-4.
16 BACHMANN M, BESSE P A, MELCHIOR H General self-imaging properties in N×N multimode interference couplers including phase relations[J]. Applied Optics, 1994, 33 (18): 3905- 3911
17 BABA T, AKIYAMA S, IMAI M, et al. 25-Gbps operation of silicon p-i-n Mach-Zehnder optical modulator with 100-μm-long phase shifter [C]// Conference on Lasers and Electro-Optics. Tokyo: IEEE, 2012: 1-2.
18 BABA T, AKIYAMA S, IMAI M, et al 25-Gb/s broadband silicon modulator with 0.31-V·cm VπL based on forward-biased PIN diodes embedded with passive equalizer[J]. Optics Express, 2015, 23 (26): 32950- 32960
19 SOREF R, BENNETT B Electrooptical effects in silicon[J]. IEEE Journal of Quantum Electronics, 1987, 23 (1): 123- 129
20 LIRA H L R, MANIPATRUNI S, LIPSON M Broadband hitless silicon electro-optic switch for on-chip optical networks[J]. Optics Express, 2009, 17 (25): 22271- 22280
21 QIAO L, TANG W, CHU T 32×32 silicon electro-optic switch with built-in monitors and balanced-status units[J]. Scientific Reports, 2017, 7 (1): 42306
22 AKIYAMA S, IMAI M, BABA T, et al Compact PIN-diode-based silicon modulator using side-wall grating waveguide[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19 (6): 74- 84
23 KAMATH B Y T, MEYER R G, GRAY P R Relationship between frequency response and settling time of operational amplifiers[J]. IEEE Journal of Solid-State Circuits, 1974, 9 (6): 347- 352
[1] . 电控可调光衰减器性能及分析[J]. J4, 2005, 39(10): 1553-1556.