Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (1): 121-129    DOI: 10.3785/j.issn.1008-973X.2024.01.013
交通工程、土木工程     
增强型集气覆盖层闭气能力影响因素及优化布置
李光耀1,2,3(),刘思达1,李鹤4,*(),詹良通2,夏敏2
1. 北京工业大学 城市与工程安全减灾教育部重点实验室,北京 100124
2. 浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058
3. 北京工业大学重庆研究院,重庆 401151
4. 浙江大学建筑设计研究院有限公司,浙江 杭州 310028
Factors affecting gas closure capacity of enhanced gas collection cover and optimized arrangement
Guangyao LI1,2,3(),Sida LIU1,He LI4,*(),Liangtong ZHAN2,Min XIA2
1. Key Laboratory of Urban and Engineering Safety and Disaster Reduction of Ministry of Education, Beijing University of Technology, Beijing 100124, China
2. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
3. Chongqing Research Institute of Beijing University of Technology, Chongqing 401151, China
4. The Architectural Design and Research Institute of Zhejiang University Limited Company, Hangzhou 310028, China
 全文: PDF(2571 KB)   HTML
摘要:

为了实现我国生活垃圾填埋场的高效集气,消除填埋气无序逸散造成的环境污染及人身安全问题,提出由HDPE土工膜、膜下集气管和土质调节层构成的增强型集气覆盖层(EGCC)结构. 采用Geo-studio软件中的Air/W模块,分析增强型集气覆盖层的闭气效果及其影响因素. 结果表明,土质调节层的固有渗透率、膜下集气管的抽气压力和单层填埋垃圾的厚度是影响增强型集气覆盖层闭气效果的3个主要因素. 膜下最大气压随着土质调节层的固有渗透率的降低、膜下集气管抽气压力的提高和单层填埋垃圾厚度的提高而增大. 提出基于土质调节层的固有渗透率和膜下集气管抽气压力的膜下集气管布置间距估算公式,建议优先选用当地容易获得的中砂或更粗的土料作为土质调节层. 在深圳下坪填埋场采用增强型集气覆盖层并结合集气井技术后,2014—2019年期间填埋气收集量提升7倍以上,收集率由不到30%提升至超过90%.

关键词: 垃圾填埋场填埋气增强型集气覆盖层(EGCC)集气管间距优化布置    
Abstract:

Enhanced gas collection cover (EGCC) was proposed in order to achieve efficient gas collection from municipal solid waste landfills in China and eliminate environmental pollution and personal safety issues caused by the disorderly release of landfill gas. This facility from top to bottom includes a HDPE geomembrane, gas collection pipes and a soil regulating layer. The Air/W module in Geo-studio software was used to analyze the gas closure performance of the EGCC and relevant influencing factors. Results show that the inherent permeability of the soil regulating layer, the extraction pressure within the gas collection pipes, and the thickness of the landfilled waste are three main factors that affect the gas closure performance of the EGCC. The maximum pressure under the HDPE geomembrane increases with the decrease in the inherent permeability of the soil regulating layer, the increase in the extraction pressure within the gas collection pipes and the increase in the thickness of the landfilled waste. A formula for estimating the arrangement spacing of the gas collection pipes based on the soil regulating layer and the extraction pressure within the gas collection pipes was proposed. It is recommended that preference should be given to locally available medium sand or coarser soils as soil regulating layers. Xiaping Landfill in Shenzhen had achieved a 7-fold increase in landfill gas collection rate from 2014 to 2019 after adopting the EGCC combined with multiple gas extraction wells, with a landfill gas collection efficiency increasing from less than 30% to over 90%.

Key words: municipal solid waste landfill    landfill gas    enhanced gas collection cover (EGCC)    arrangement spacing of gas collection pipes    optimized arrangement
收稿日期: 2023-04-12 出版日期: 2023-11-07
CLC:  TU 43  
基金资助: 国家自然科学基金青年资助项目(42107186);重庆市自然科学基金面上资助项目(CSTB2023NSCQ-MSX0279);软弱土与环境土工教育部重点实验室开放基金资助项目(2021P01);国家重点研发计划资助项目(2018YFC1802300)
通讯作者: 李鹤     E-mail: geoguangyao@bjut.edu.cn;lihe2404@126.com
作者简介: 李光耀(1991—),男,讲师,博士,从事环境岩土工程与非饱和土力学的研究. orcid.org/0000-0002-9724-6044. E-mail: geoguangyao@bjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李光耀
刘思达
李鹤
詹良通
夏敏

引用本文:

李光耀,刘思达,李鹤,詹良通,夏敏. 增强型集气覆盖层闭气能力影响因素及优化布置[J]. 浙江大学学报(工学版), 2024, 58(1): 121-129.

Guangyao LI,Sida LIU,He LI,Liangtong ZHAN,Min XIA. Factors affecting gas closure capacity of enhanced gas collection cover and optimized arrangement. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 121-129.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.01.013        https://www.zjujournals.com/eng/CN/Y2024/V58/I1/121

图 1  增强型集气覆盖层的结构示意图
图 2  增强型集气覆盖层的计算模型
工况编号 土质调节层 集气管 H/m
K/(10?11 m2 h/m p/kPa D/m 埋设位置
1-1 100 0.2 ?1.5 0.1 层中 5
1-2 10 0.2 ?1.5 0.1
1-3 1 0.2 ?1.5 0.1
1-4 0.1 0.2 ?1.5 0.1
1-5 0.01 0.2 ?1.5 0.1
2-1 1 0.10 ?1.5 0.1 层中 5
2-2 1 0.15 ?1.5 0.1
2-3 1 0.20 ?1.5 0.1
2-4 1 0.25 ?1.5 0.1
2-5 1 0.30 ?1.5 0.1
3-1 1 0.2 0 0.1 层中 5
3-2 1 0.2 ?0.5 0.1
3-3 1 0.2 ?1.0 0.1
3-4 1 0.2 ?1.5 0.1
3-5 1 0.2 ?2.0 0.1
4-1 1 0.2 ?1.5 0.05 层中 5
4-2 1 0.2 ?1.5 0.10
4-3 1 0.2 ?1.5 0.15
4-4 1 0.2 ?1.5 0.20
5-1 1 0.2 ?1.5 0.1 层上 5
5-2 1 0.2 ?1.5 0.1 层中
5-3 1 0.2 ?1.5 0.1 层下
6-1 1 0.2 ?1.5 0.1 层中 5
6-2 1 0.2 ?1.5 0.1 6
6-3 1 0.2 ?1.5 0.1 7
6-4 1 0.2 ?1.5 0.1 8
6-5 1 0.2 ?1.5 0.1 9
6-6 1 0.2 ?1.5 0.1 10
表 1  增强型集气覆盖层闭气效果的分析工况汇总
图 3  不同垃圾厚度对应的产气速率
图 4  代表性工况3~5的数值分析结果
图 5  不同工况第100天时膜下气压与模型水平距离的关系
图 6  作图法确定集气管布置间距(集气管抽气压力为−1.5 kPa)
图 7  集气管间距的估算方法
类型 K/m2 L/m
p = 0 kPa p = ?1 kPa p = ?2 kPa p = ?3 kPa p = ?4 kPa p = ?5 kPa
碎石、粗砂 10?11~10?10 0.3~3.0 0.8~8.0 2~22 6~60 17~170 45~450
中砂 10?12~10?11 0.03~0.3 0.08~0.8 0.2~2 0.6~6 1.7~17 4.5~45
细砂、粉砂 10?13~10?12 0.003~0.03 0.008~0.08 0.02~0.2 0.06~0.6 0.17~1.7 0.45~4.5
表 2  不同类型粗粒土对应的集气管间距
图 8  深圳下坪填埋场全场集输气管网布置
图 9  深圳下坪填埋场填埋气产生速率和收集速率随时间的变化
1 中国统计年鉴[EB/OL]. [2023-04-11]. https://navi.cnki.net/knavi/yearbooks/YINFN/issues/0OYqzdRULgj25p8jQqvux1mJ_9qyFvowHona-cVOzTFlv4Gz7hTNE2_H-5BsNZt7wvI-MEwmhqk=?uniplatform=NZKPT&language=chs.
2 GAO W, CHEN Y, ZHAN L, et al Engineering properties for high kitchen waste content municipal solid waste[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7 (6): 646- 658
3 李鹤. 高厨余垃圾填埋场降解固结性状及液气诱发灾害治理方法 [D]. 杭州: 浙江大学, 2022.
LI He. Degradation and consolidation characteristics of high kitchen waste landfill and treatment methods of liquid gas induced disasters [D]. Hangzhou: Zhejiang University, 2002.
4 陈云敏 环境土工基本理论及工程应用[J]. 岩土工程学报, 2014, 36 (1): 1- 46
CHEN Yunmin Basic theory and engineering application of environmental geotechnical engineering[J]. Journal of Geotechnical Engineering, 2014, 36 (1): 1- 46
doi: 10.11779/CJGE201401001
5 张俊文 液气阻滞作用下填埋场局部滑移案例分析[J]. 中国资源综合利用, 2022, 40 (7): 124- 127
ZHANG Junwen Local slip case analysis of landfill under liquid-gas retardation[J]. China Resources Comprehensive Utilization, 2022, 40 (7): 124- 127
doi: 10.3969/j.issn.1008-9500.2022.07.039
6 WANG X, NAGPURE A S, DECAROLIS J F, et al. Using observed data to improve estimated methane collection from select U. S. landfills [J/OL]. Environmental Science and Technology, 2013, 47(7): 3251-3257[2023-04-01]. https://pubs.acs.org/doi/epdf/10.1021/es304565m.
7 CHEN Y M, ZHAN L T, XU X B, et al. Moisture and gas flow properties of compacted loess final covers for MSW landfills in Northwest [C]// Proceeding of 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris: [s. n.], 2013: 3009-3012.
8 沈斯亮. 生活垃圾填埋场填埋气测试方法与逸出规律[D]. 杭州: 浙江大学, 2020: 21.
SHEN Siliang. Test method and escape law of landfill gas in domestic waste landfill [D]. Hangzhou: Zhejiang University, 2020: 21.
9 刘彦君, 杨惠媛, 刘宏, 等 生活垃圾填埋场覆盖膜破损及其环境影响[J]. 中国环境监测, 2022, 38 (3): 170- 174
LIU Yanjun, YANG Huiyuan, LIU Hong, et al Damage of landfill cover film and its environmental impact[J]. China Environmental Monitoring, 2022, 38 (3): 170- 174
10 生活垃圾卫生填埋技术规范: CJJ 17-2004 [EB/OL]. [2023-04-11]. https://kns.cnki.net/kcms2/article/abstract?v=kxaUMs6x7-6q_AXxJfcZexIw_qLsfQZE-6kuhgfplYGhnsGOgQg-lQASeg93saLv0UQPQuMcn74O_O9H0I63h8G8T-aCnS-z&uniplatform=NZKPT.
11 ZHAN L T, XU H, CHEN Y M, et al Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: preliminary findings from a large-scale experiment[J]. Waste Management, 2017, 63: 27- 40
doi: 10.1016/j.wasman.2017.03.008
12 CHEN Y M, ZHAN L T, XU X B, et al. Geo-environmental problems in landfills of MSW with high organic content semantic scholar [C]// Proceeding of 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris: [s. n. ], 2013: 3009-3012.
13 兰吉武. 填埋场渗滤液产生、运移及水位雍高机理和控制[D]. 杭州: 浙江大学, 2012.
LAN Jiwu. Mechanism and control of leachate generation, migration and water level rise in landfill [D]. Hangzhou: Zhejiang University, 2012.
14 叶剑. 填埋场渗沥液产量计算与水平导排盲沟渗流分析[D]. 杭州: 浙江大学, 2015.
YE Jian. Leachate yield calculation and seepage analysis of horizontal drainage blind ditch [D]. Hangzhou: Zhejiang University, 2015.
15 徐辉. 高厨余垃圾生化—水力—力学相互作用大型模型试验及应用[D]. 杭州: 浙江大学, 2016.
XU Hui. Large-scale model test and application of biochemical-hydraulic-mechanical interaction of high kitchen waste [D]. Hangzhou: Zhejiang University, 2016.
16 生活垃圾卫生填埋场岩土工程技术规范 [S]. 北京: 住房和城乡建设部, 2012.
17 XU X B, ZHAN T L T, CHEN Y M, et al Intrinsic and relative permeabilities of shredded municipal solid wastes from the Qi Zishan landfill, China[J]. Canadian Geotechnical Journal, 2014, 51 (11): 1243- 1252
doi: 10.1139/cgj-2013-0306
18 黎青松, 郭祥信, 徐文龙, 等 深圳市玉龙坑垃圾填埋气体成分与产气规律研究[J]. 环境卫生工程, 1999, 7 (1): 6- 9
LI Qingsong, GUO Xiangxin, XU Wenlong, et al Study on gas composition and gas production law of Yulongkeng landfill in Shenzhen[J]. Environmental Health Engineering, 1999, 7 (1): 6- 9
19 罗钰翔, 王伟, 高兴保 生活垃圾填埋气体产量的现场测试及IPCC推荐模型的校验[J]. 环境科学, 2009, 30 (11): 3427- 3431
LUO Yuxiang, WANG Wei, GAO Xingbao Field test of landfill gas production and validation of IPCC recommended model[J]. Environmental Science, 2009, 30 (11): 3427- 3431
doi: 10.3321/j.issn:0250-3301.2009.11.050
20 马小飞. 垃圾填埋场抽气试验及填埋气收集量评估方法[D]. 杭州: 浙江大学, 2013.
MA Xiaofei. Landfill pumping test and landfill gas collection evaluation method [D]. Hangzhou: Zhejiang University, 2013.
21 高武, 詹良通, 兰吉武, 等 高渗滤液水位填埋场的填埋气高效收集探究[J]. 中国环境科学, 2017, 37 (4): 1434- 1441
GAO Wu, ZHAN Liangtong, LAN Jiwu, et al Efficient collection of landfill gas from landfills with high leachate levels[J]. China Environmental Science, 2017, 37 (4): 1434- 1441
22 李广信, 张丙印, 于玉贞. 土力学(第2版)[M]. 北京: 清华大学出版社, 2013.
[1] 詹良通, 龚标, 兰吉武, 王誉泽, 陈云敏. 黄土中渗滤液的迁移勘察与数值分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1196-1202.