Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (10): 2060-2076    DOI: 10.3785/j.issn.1008-973X.2023.10.015
机械工程、能源工程     
液滴撞击移动及旋转表面过程研究综述
周易1(),金哲岩1,2,*(),杨志刚2
1. 同济大学 航空航天与力学学院,上海 200092
2. 上海市地面交通工具空气动力与热环境模拟重点实验室,上海 201804
Review on droplets impact process on moving and rotating surfaces
Yi ZHOU1(),Zhe-yan JIN1,2,*(),Zhi-gang YANG2
1. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
2. Shanghai Key Laboratory of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Shanghai 201804, China
 全文: PDF(3621 KB)   HTML
摘要:

基于现有液滴撞击移动及旋转表面的研究,简要阐述液滴撞击移动表面及旋转表面的现象;将移动表面分为平移固体表面、旋转固体表面和移动液膜3种形式,从实验系统、模型建立和数值模拟3个方向对现有的液滴撞击移动表面研究进行总结. 液滴撞击移动及旋转表面的研究已有一定基础,而高撞击速度、微小液滴、旋转表面等情况的研究较为空白,旋转表面波推进等理论和实验结果也缺乏数值模拟的补充. 基于上述情况,提出液滴撞击移动表面及旋转表面的研究展望.

关键词: 液滴撞击移动表面旋转表面移动液膜不对称铺展不对称飞溅    
Abstract:

Based on existing research on droplet impact on moving and rotating surfaces, the phenomenon of droplet impact on moving and rotating surfaces needs to be briefly summarized. Moving surfaces can be divided into three forms: translating solid surfaces, rotating solid surfaces, and moving liquid films. The comprehensive study and summary on the impact of liquid droplets on the moving surface from three directions: experimental system, model establishment and numerical simulation. The research on droplet impact movement and rotating surfaces has a certain foundation, while the research on high impact velocity, small droplets, rotating surfaces and other situations is relatively blank. The theoretical and experimental results of rotating surface wave propulsion also lack numerical simulation supplementation. Based on the above situation, the research prospects of droplet impact on moving and rotating surfaces are proposed.

Key words: droplet impact    moving surface    rotating surface    moving water film    asymmetric spreading    asymmetric splashing
收稿日期: 2022-12-15 出版日期: 2023-10-18
CLC:  V 219  
基金资助: 沈阳市飞机结冰与防除冰重点实验室“新风向”联合创新项目
通讯作者: 金哲岩     E-mail: 2030899@tongji.edu.cn;zheyanjin@tongji.edu.cn
作者简介: 周易(1996—),男,硕士生,从事飞行器结冰机理研究. orcid.org/0000-0002-0927-9701. E-mail: 2030899@tongji.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
周易
金哲岩
杨志刚

引用本文:

周易,金哲岩,杨志刚. 液滴撞击移动及旋转表面过程研究综述[J]. 浙江大学学报(工学版), 2023, 57(10): 2060-2076.

Yi ZHOU,Zhe-yan JIN,Zhi-gang YANG. Review on droplets impact process on moving and rotating surfaces. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2060-2076.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.10.015        https://www.zjujournals.com/eng/CN/Y2023/V57/I10/2060

图 1  液滴撞击移动表面的实验系统
选取的文献 测试液体 D0/mm Vn/(m·s?1) Vmax/(m·s?1) 表面
Mundo等[25] 水、乙醇 0.06~0.15 12~18 30 不锈钢
Chen等[26] 0.50~0.90 1.0~3.0 4.5 特氟龙
Bird等[27] 乙醇 0.80 0.8~3.6 21
Zen等[22] 乙醇 2.30~2.50 1.4~3.9 8 多晶硅
Almohammadi等[19] 甘油、水 2.50 0.5~3.4 17 特氟龙
Hao等[21] 甘油 2.00~3.10 1.0~2.4 5 抛光不锈钢
Almohammadi等[23] 甘油、水 2.50 0.5~3.4 17 不锈钢、特氟龙
Buksh等[20] 硅油、甘油、水 2.50~2.70 0.8~2.3 2.9 不锈钢
Zhang等[24] 2.50 0.7~3.0 1.5 铝、二氧化硅
Buksh等[28] 硅油、甘油、水 2.50 0.4~2.9 2.9 不锈钢
Li 等[29] 4.40 1.9~3.1 14
Li 等[30] 4.40 1.4~4.4 18.9
Yuan 等[31] 水、乙醇 2.50 3.1 1.9
Moghtadernejad 等[32] 2.40 1.0~2.4 10.4
表 1  液滴撞击移动固体表面实验条件
图 2  常见液滴撞击移动液膜实验平台[34]
选取的文献 液滴液体 液膜液体 D0/mm Vn/(m·s?1) q/(L·min?1)
Algho等[33] 2.4、3.8 2.90 1.0~5.5
Che等[36] 3.3、 4、5.2 0.30~2.90 0.9~10.7
Gao等[35] 甘油, 水 甘油, 水 2.6~4.6 0.60~4.20 1.2~2.2
Gao等[37] 2.2~4.3 0.17~4.50 1.2~3.6
Adebayo等[38] 2.3~4.4 2.40~3.90 100~600
Burzynski等[39] 3.0 7.40~10.50 14
表 2  液滴撞击移动液膜实验条件
图 3  液滴撞击硬表面的典型现象[41]
文献来源 静止固体
模型 飞溅阈值
Mundo 等[25] $ K={\left({W{e}_{\boldsymbol{n}}R{e}_{\boldsymbol{n}}}^{0.5}\right)}^{0.5} $ $ {K}_{\mathrm{c}}=57.7 $
Vander Wal等[48] $ K=W{e}_{\boldsymbol{n}}^{0.5}R{e}_{\boldsymbol{n}}^{-0.391} $ ${K}_{\mathrm{c} }=0.845\;8$
Pierzyna等[49] $ K={c}_{0}+{c}_{1}{V}_{\boldsymbol{n}}+\dfrac{{c}_{2}}{\mu }+{c}_{3}\sigma +{c}_{4}{\rho }_{g} $ $ {K}_{\mathrm{c}}=0.14 $
文献来源 静止液膜
模型 飞溅阈值
Cossali等[50] $ K=O{h}^{-0.4}W{e}_{\boldsymbol{n}} $ $ {K}_{\mathrm{c}}=2\;100+5\;\mathrm{ }880{H}^{1.44} $
Rioboo等[51] $ K=O{h}^{-0.4}W{e}_{\boldsymbol{n}} $ $ {K}_{\mathrm{c}}=2\;100 $
Zhu等[52] $ K=O{h}^{-0.4}W{e}_{\boldsymbol{n}} $ $ {K}_{\mathrm{c}}=1\mathrm{ }\;880+156\;\mathrm{ }122{H}^{2.017} $
Okawa等[53] $ K=O{h}^{-0.581}W{e}_{\boldsymbol{n}} $ $ {K}_{\mathrm{c}}=8\;\mathrm{ }123 $
表 3  部分液滴撞击静止表面飞溅阈值模型
图 4  液滴撞击倾斜与移动固体表面铺展对比[28]
图 5  液滴撞击移动表面的不对称铺展和飞溅
图 6  液滴铺展现象及对应参量定义
$ {\mathit{V}}_{\boldsymbol{s}} $ $ \mathit{a} $ $ \mathit{b} $ 上游飞溅 下游飞溅 $ \mathit{x} $ $ {\mathit{t}}_{\mathbf{c}} $
促进 抑制
表 4  表面运动速度与液滴铺展、飞溅、端点偏移和接触时间的关系[54-57]
图 7  液滴撞击旋转表面非中心位置的不对称铺展、铺展薄层上波的出现及液指现象
变量 $ {\mathit{V}}_{{{\rm{w}}}} $ $ {\mathit{D}}_{{{\rm{w}}}} $ $ {\mathit{N}}_{\mathbf{f}} $ $ {{\rm{Lw}}}_{{\theta }} $ $ {\rm{{Lw}}} $ 二次液滴
$ {\mathit{V}}_{\boldsymbol{n}} $ 抑制
$ {\mathit{R}}_{\boldsymbol{n}} $
表 5  液滴撞击旋转平台非中心位置实验结果[32]
图 8  液滴撞击液膜主要现象[33]
图 9  液滴撞击移动液膜水花形态
图 10  3种不同形态的流动液膜区域[38]
图 11  液滴在平移固体表面铺展模型[23]
图 12  椭圆形铺展模型在不同表面运动速度下的表现[20]
图 13  液体薄层边缘位置角 $ \mathit{\phi } $[19]
图 14  波推进过程示意图[32]
图 15  液滴下方气流和液膜流动[36]
图 16  分子动力学模拟液滴撞击移动固体表面[104]
图 17  VOF方法模拟液滴撞击移动固体表面的模型和初始条件[105]
图 18  液滴撞击流动液膜的三维数值模拟与实验对比[68]
58 FATHI S, DICKENS P, FOUCHAL F Regimes of droplet train impact on a moving surface in an additive manufacturing process[J]. Journal of Materials Processing Technology, 2010, 210 (3): 550- 559
doi: 10.1016/j.jmatprotec.2009.10.018
59 FATHI S, DICKENS P, HAGUE R J M, et al, Analysis of droplet train/moving substrate interactions in ink-jetting processes [C]// 2008 International Solid Freeform Fabrication Symposium, Texas: [s. n.], 2008: 230-237.
60 LI H, WANG P, QI L, et al 3D numerical simulation of successive deposition of uniform molten Al droplets on a moving substrate and experimental validation[J]. Computational Materials Science, 2012, 65: 291- 301
doi: 10.1016/j.commatsci.2012.07.034
61 屈冲. 液滴与旋转壁面的冲击动力学研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 24-42.
QU Chong. A study of impact dynamics of droplet on the rotating substrate [D]. Harbin: Harbin Institute of Technology, 2020: 24-42.
62 SAHOO S, ORPE A V, DOSHIB P Spreading dynamics of superposed liquid drops on a spinning disk[J]. Physics of Fluids, 2018, 30 (1): 012110
doi: 10.1063/1.5002601
63 CHOU F C, ZEN T S, LEE K W An experimental study of a water droplet impacting on a rotating wafer[J]. Atomization and Sprays, 2009, 19 (10): 905- 916
doi: 10.1615/AtomizSpr.v19.i10.10
64 MANZELLO S L, YANG J C An experimental study of a water droplet impinging on a liquid surface[J]. Experiments in Fluids, 2002, 32 (5): 580- 589
doi: 10.1007/s00348-001-0401-8
65 REIN M Phenomena of liquid drop impact on solid and liquid surfaces[J]. Fluid Dynamics Research, 1993, 12 (2): 61- 93
doi: 10.1016/0169-5983(93)90106-K
66 REIN M. Wave phenomena during droplet impact [C]// IUTAM Symposium on Waves in Liquid/Gas and Liquid/Vapour Two-Phase Systems. Kyoto: Springer, 1995: 171-190
67 ZHAO K, WANG Y, DING Y, et al Numerical and theoretical study on the spreading characteristics of droplet impact on a horizontal flowing liquid film[J]. Colloids and Surfaces a Physicochemical and Engineering Aspects, 2021, 616 (1): 126338
68 HE J, YUAN H, HE X, et al Droplet impact on a moving thin film with pseudo potential lattice Boltzmann method[J]. Mathematical Problems in Engineering, 2020, 2020 (3): 1- 15
69 CASTREJÓN-PITA J R, MUÑOZ-SÁNCHEZ B N, HUTCHINGS I M, et al Droplet impact onto moving liquids[J]. Journal of Fluid Mechanics, 2016, 809: 716- 725
doi: 10.1017/jfm.2016.672
1 王亚青, 刘明侯, 刘东 喷雾冷却换热机理和影响换热性能的因素[J]. 强光与粒子束, 2011, 23 (9): 2277- 2281
WANG Ya-qing, LIU Ming-hou, LIU Dong Heat Transfer mechanism and influence factors in spray cooling[J]. High Power Laser and Particle Beams, 2011, 23 (9): 2277- 2281
2 HOPKINSON N, HAGUE R J M, DICKENS P M. Rapid manufacturing: an industrial revolution for the digital age [M]. UK: John Wiley and Sons, 2006: 58-63.
3 崔洁, 陆军军, 陈雪莉 液滴高速撞击固体板面过程的研究[J]. 化学反应工程与工艺, 2008, 24 (5): 390- 394
CUI Jie, LU Jun-jun, CHEN Xue-li Study of liquid droplet impacting on a solid surface with high velocity[J]. Chemical Reaction Engineering and Technology, 2008, 24 (5): 390- 394
doi: 10.3969/j.issn.1001-7631.2008.05.002
4 MOHLER S H Predicting droplet impingement on yawed wings[J]. Journal of Aircraft, 2015, 29 (5): 964- 966
5 FORNEY L J Droplet impaction on a supersonic wedge- consideration of similitude[J]. AIAA Journal, 1990, 28 (4): 650- 654
doi: 10.2514/3.10442
6 张丽芬, 张美华, 吴丁毅, 等 旋转帽罩结冰相似准则的研究[J]. 推进技术, 2015, 36 (8): 1164- 1169
ZHANG Li-fen, ZHANG Mei-hua, WU Ding-yi, et al Research on icing scaling law for rotating cone[J]. Journal of Propulsion Technology, 2015, 36 (8): 1164- 1169
doi: 10.13675/j.cnki.tjjs.2015.08.007
7 李岩, 王绍龙, 易贤, 等 绕轴旋转圆柱结冰特性结冰风洞试验[J]. 航空学报, 2017, 38 (2): 1- 11
LI Yan, WANG Shao-long, YI Xian, et al An icing wind tunnel test on icing characteristics of cylinder rotating around a shaft[J]. Acta Aeronautica Et Astronautica Sinica, 2017, 38 (2): 1- 11
8 李岩, 孙策, 郭文峰, 等 利用自然低温的旋转叶片结冰风洞试验系统设计[J]. 实验流体力学, 2018, 32 (2): 40- 47
LI Yan, SUN Ce, GUO Wen-feng, et al Design of icing wind tunnel experiment system for rotating blades by using natural low temperature[J]. Journal of Experiments in Fluid Mechanics, 2018, 32 (2): 40- 47
doi: 10.11729/syltlx20170073
9 李岩, 王绍龙, 冯放, 等 绕轴旋转翼型结冰分布的结冰风洞试验研究[J]. 哈尔滨工程大学学报, 2017, 38 (4): 545- 553
LI Yan, WANG Shao-long, FENG Fang, et al An icing wind tunnel experiment on the icing distribution of a blade airfoil rotating around a shaft[J]. Journal of Harbin Engineering University, 2017, 38 (4): 545- 553
doi: 10.11990/jheu.201610051
10 WORTHINGTON A M On the forms assumed by drops of liquids falling vertically on a horizontal plate[J]. Proceedings of the Royal Society of London, 1876, 25: 261- 271
11 WORTHINGTON A M A second paper on the forms assumed by drops of liquids falling vertically on a horizontal plate[J]. Proceedings of the Royal Society of London B, 1877, 25: 498- 503
doi: 10.1098/rspl.1876.0073
12 权生林, 李维仲, 朱卫英 水滴撞击固体表面实验研究[J]. 大连理工大学学报, 2009, 49 (6): 833- 836
QUAN Sheng-lin, LI Wei-zhong, ZHU Wei-ying Experimental study of water droplet impacted onto solid surfaces[J]. Journal of Dalian University of Technology, 2009, 49 (6): 833- 836
doi: 10.7511/dllgxb200906010
13 ENGEL O G Waterdrop collisions with solid surfaces[J]. Journal of Research of the National Bureau of Standards, 1955, 54 (5): 281- 298
doi: 10.6028/jres.054.033
14 施明恒 单个液滴碰击表面时的流体动力学特性[J]. 力学学报, 1985, 17 (5): 419- 425
SHI Ming-heng Behavior of a liquid droplet impacting on a solid surface[J]. Chinese Journal of Theoretical and Applied Mechanics, 1985, 17 (5): 419- 425
15 SIKALO S, MARENGO M, TROPEA C, et al Analysis of impact of droplets on horizontal surfaces[J]. Experimental Thermal and Fluid Science, 2002, 25 (7): 503- 510
doi: 10.1016/S0894-1777(01)00109-1
16 SIKALO S, GANIC E N Phenomena of droplet-surface interactions[J]. Experimental Thermal and Fluid Science, 2006, 31 (2): 97- 110
doi: 10.1016/j.expthermflusci.2006.03.028
17 SIKALO S, TROPEA C, GANIC E N Impact of droplet onto inclined surface[J]. Journal of Colloid and Interface Science, 2005, 286 (2): 661- 669
doi: 10.1016/j.jcis.2005.01.050
18 SIKALO S, TROPEA C, GANIC E N Dynamic wetting angle of a spreading droplet[J]. Experimental Thermal and Fluid Science, 2005, 29 (7): 795- 802
doi: 10.1016/j.expthermflusci.2005.03.006
19 ALMOHAMMADI H, AMIRFAZLI A Understanding the drop impact on moving hydrophilic and hydrophobic surfaces[J]. Soft Matter, 2017, 13 (10): 2040
doi: 10.1039/C6SM02514E
20 BUKSH S, ALMOHAMMADI H, MARENGO M, et al Spreading of low-viscous liquids on a stationary and a moving surface[J]. Experiments in Fluids, 2019, 60 (4): 60- 76
doi: 10.1007/s00348-019-2709-2
21 HAO J, GREEN S Splash threshold of a droplet impacting a moving substrate[J]. Physics of Fluids, 2017, 29 (1): 012103
doi: 10.1063/1.4972976
22 ZEN T, CHOU F, MA J Ethanol drop impact on an inclined moving surface[J]. International Communications in Heat and Mass Transfer, 2010, 37 (8): 1025- 1030
doi: 10.1016/j.icheatmasstransfer.2010.05.003
23 ALMOHAMMADI H, AMIRFAZLI A Asymmetric spreading of a drop upon impact onto a surface[J]. Langmuir, 2017, 33 (23): 5957- 5964
doi: 10.1021/acs.langmuir.7b00704
24 ZHANG X, ZHU Z, ZHANG C, et al Reduced contact time of a droplet impacting on a moving superhydrophobic surface[J]. Applid Physics Letters, 2020, 117 (15): 151602
doi: 10.1063/5.0023896
25 MUNDO C, SOMMERFELD M, TROPEA C Droplet-wall collisions: experimental studies of the deformation and breakup process[J]. International Journal of Multiphase Flow, 1995, 21 (2): 151- 173
doi: 10.1016/0301-9322(94)00069-V
26 CHEN R H, WANG H W Effects of tangential speed on low-normal-speed liquid drop impact on a non-wettable solid surface[J]. Experiments in Fluids, 2005, 39 (4): 754- 760
doi: 10.1007/s00348-005-0008-6
27 BIRD J C, TSAI S S H, STONE H A Inclined to splash: triggering and inhibiting a splash with tangential velocity[J]. New Journal of Physics, 2009, 11: 063017
doi: 10.1088/1367-2630/11/6/063017
28 BUKSH S, MARENGO M, AMIRFAZLI A Impacting of droplets on moving surface and inclined surfaces[J]. Atomization and Sprays, 2021, 30 (8): 557- 574
29 LI J, YUAN X, HAN Q Time evolutions of water drops impacting on a rotating disk[J]. Advanced Materials Research, 2012, 354-355: 609- 614
30 LI J, YUAN X, HAN Q, et al Impact patterns and temporal evolutions of water drops impinging on a rotating disc[J]. Journal of Mechanical Engineering Science, 2012, 226 (4): 956- 967
doi: 10.1177/0954406211419604
31 YUAN X, LI J, ZHANG B Effects of surface tension on drop impact on a horizontal rotating disk[J]. Applied Mechanics and Materials, 2013, 268-270: 1084- 1093
32 MOGHTADERNEJAD S, JADIDI M, JOHNSON Z, et al Droplet impact dynamics on an aluminum spinning disk[J]. Physics of Fluids, 2021, 33 (7): 072103
doi: 10.1063/5.0050997
33 ALGHOUL S K, EASTWICK C N, HANN D B Normal droplet impact on horizontal moving films: an investigation of impact behaviour and regimes[J]. Experiments in Fluids, 2011, 50 (5): 1305- 1316
doi: 10.1007/s00348-010-0991-0
34 GUPTA G, KUMAR P Splashing dynamics of a drop impact onto a deep liquid pool with moving film interface[J]. Physics of Fluids, 2020, 32 (1): 012102
doi: 10.1063/1.5131637
35 GAO X, LI R Impact of a single drop on a flowing liquid film[J]. Physical Review, 2015, 92 (5): 053005
36 CHE Z, DEYGAS A, MATAR O K Impact of droplets on inclined flowing liquid films[J]. Physical Review, 2015, 92 (2): 023032
37 GAO X, KONG L, LI R, et al Heat transfer of single drop impact on a film flow cooling a hot surface[J]. International Journal of Heat and Mass Transfer, 2017, 108: 1068- 1077
doi: 10.1016/j.ijheatmasstransfer.2016.12.106
38 ADEBAYO I T, MATAR O K Droplet impact on flowing liquid films with inlet forcing: the splashing regime[J]. Soft Matter, 2017, 13 (41): 7473
doi: 10.1039/C7SM01468F
39 BURZYNSKI D A, BANSMER S E Droplet splashing on thin moving films at high Weber numbers[J]. International Journal of Multiphase Flow, 2018, 101: 202- 211
doi: 10.1016/j.ijmultiphaseflow.2018.01.015
40 YARIN AL Drop impact dynamics: splashing, spreading, receding, bouncing…[J]. Annual Review of Fluid Mechanics, 2006, 38 (1): 159- 192
doi: 10.1146/annurev.fluid.38.050304.092144
41 RIOBOO R, TROPEA C, MARENGO M Outcomes from a drop impact on solid surfaces[J]. Atomization and Sprays, 2001, 11 (2): 155- 165
42 MEHDIZADEH N Z, CHANDRA S, MOSTAGHIMI J Formation of fingers around the edges of a drop hitting a metal plate with high velocity[J]. Journal of Fluid Mechanics, 2004, 510: 353- 373
doi: 10.1017/S0022112004009310
43 MAO T, KUHND D C S, TRAN H Spread and rebound of liquid droplets upon impact on flat surfaces[J]. American Institute of Chemical Engineers Journal, 1997, 43 (9): 2169- 2179
doi: 10.1002/aic.690430903
44 XU L, ZHANG W, NAGEL S R Drop splashing on a dry smooth surface[J]. Physical Review Letters, 2005, 94 (18): 184505
doi: 10.1103/PhysRevLett.94.184505
45 MANDRE S, MANI M, BRENNER M P Precursors to splashing of liquid droplets on a solid surface[J]. Physical Review Letters, 2009, 102 (13): 134502
doi: 10.1103/PhysRevLett.102.134502
46 陆军军, 陈雪莉, 曹显奎, 等 液滴撞击平板的铺展特征[J]. 化学反应工程与工艺, 2007, 23 (6): 506- 511
LU Jun-jun, CHEN Xue-li, CAO Xian-kui, et al Characteristic phenomenon and analysis of a single liquid droplet impacting on dry surfaces[J]. Chemical Reaction Engineering and Technology, 2007, 23 (6): 506- 511
doi: 10.3969/j.issn.1001-7631.2007.06.005
47 春江, 王瑾萱, 徐晨, 等 液滴撞击超亲水表面的最大铺展直径预测模型[J]. 物理学报, 2021, 70 (10): 106801
CHUN Jiang, WANG Jin-Xuan, XU Chen, et al Theoretical model of maximum spreading diameter on super hydrophilic surfaces[J]. Acta Physica Sinica, 2021, 70 (10): 106801
doi: 10.7498/aps.70.20201918
48 WAL R L V, BERGER G M, MOZES S D The splash/non-splash boundary upon a dry surface and thin fluid film[J]. Experiments in Fluids, 2006, 40 (1): 53- 59
doi: 10.1007/s00348-005-0045-1
49 PIERZYNA M, BURZYNSKI D A, BANSMER S E, et al Data-driven splashing threshold model for drop impact on dry smooth surfaces[J]. Physics of Fluids, 2021, 33: 123317
doi: 10.1063/5.0076427
50 COSSALI G E, COGHE A, MARENGO M The impact of a single drop on a wetted solid surface[J]. Experiments in Fluids, 1997, 22: 463- 472
doi: 10.1007/s003480050073
51 RIOBOO R, BAUTHIER C, CONTI J, et al Experimental investigation of splash and crown formation during single drop impact on wetted surfaces[J]. Experiments in Fluids, 2003, 35 (6): 648- 652
doi: 10.1007/s00348-003-0719-5
52 ZHU J, TU C, LU T, et al Behavior of a water droplet impacting a thin water film[J]. Experiments in Fluids, 2021, 62: 143- 156
doi: 10.1007/s00348-021-03245-0
53 OKAWA T, KUBO K, KAWAI K, et al Experiments on splashing thresholds during single-drop impact onto a quiescent liquid film[J]. Experimental Thermal and Fluid Science, 2021, 121: 110279
doi: 10.1016/j.expthermflusci.2020.110279
54 孙志成, 董昊, 赵世文, 等 液滴撞击移动表面动力学特性[J]. 工程热物理学报, 2020, 41 (5): 1216- 1218
SUN Zhi-cheng, DONG Hao, ZHAO Shi-wen, et al Dynamic behavior of droplet impacting on moving surface[J]. Journal of Engineering Thermophysics, 2020, 41 (5): 1216- 1218
55 POVAROV O A, NAZAROV O I, IGNATEVSKAYA L A, et al Interaction of drops with boundary layer on rotating surface[J]. Journal of Engineering Physics, 1976, 31 (6): 1453- 1456
doi: 10.1007/BF00860580
56 COURBIN L, BIRD J C, STONE H A Splash and anti-splash: observation and design[J]. Chaos, 2006, 16 (4): 041102
doi: 10.1063/1.2390551
57 孙志成. 液滴撞击移动常温和冷表面动力学特性研究[D]. 南京: 南京师范大学, 2019: 23-57.
SUN Zhi-cheng. Research on the dynamics of droplets impacting on the room-temperature surfaces and cold surfaces [D]. Nanjing: NanJing Normal University, 2019: 23-57.
70 范国军. 液滴碰撞流动液膜的特性及影响因素研究[D]. 北京: 北京工业大学, 2014: 2-8.
FAN Guo-jun. Study on the characteristics and influencing factors of the droplets impacting onto the moving liquid film [D]. Beijing: Beijing University of Technology, 2014: 2-8.
71 CRASTER R V, MATAR O K Dynamics and stability of thin liquid films[J]. Review of Modern Physics, 2009, 81 (3): 1131
doi: 10.1103/RevModPhys.81.1131
72 LIU J, GOLLUB J P Solitary wave dynamics of film flows[J]. Physics of Fluids, 1994, 6 (5): 1702
doi: 10.1063/1.868232
73 KALLIADASIS S, RUYER-QUIL C, SCHEID B, et al. Falling liquid films [C]// Applid Mathmatical Sciences. London: Springer, 2011: 1-440.
74 ALGHOUL S K, EASTWICK C, HANN D Droplet impact on shear-driven liquid films[J]. Atomization and Sprays, 2011, 21 (10): 833- 846
doi: 10.1615/AtomizSpr.2012004124
75 CHENG M, LOU J Lattice Boltzmann simulation of a drop impact on a moving wall with a liquid film[J]. Computers and Mathematics with Applications, 2014, 67 (2): 307- 317
doi: 10.1016/j.camwa.2013.07.003
76 CHENG M, LOU J A numerical study on splash of oblique drop impact on wet walls[J]. Computers and Fluids, 2015, 115: 11- 24
doi: 10.1016/j.compfluid.2015.03.019
77 陈烽, 王登飞, 蔡子琦, 等 液滴撞击固体表面过程的实验研究[J]. 北京化工大学学报: 自然科学版, 2019, 46 (4): 15- 22
CHEN Feng, WANG Deng-fei, CAI Zi-qi, et al Experimental study on the process of droplet impacting solid surface[J]. Journal of Beijing University of Chemical Technology: Natural Science, 2019, 46 (4): 15- 22
78 CHANDRA S, AVEDISIAN C T On the collision of a droplet with a solid surface[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1991, 432: 13- 41
79 PASANDIDEH M, QIAO Y M, CHANDRA S, et al Capillary effects during droplet impact on a solid surface[J]. Physics of Fluids, 1996, 8 (3): 650- 658
doi: 10.1063/1.868850
80 UKIWE C, KWOK D Y On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces[J]. Langmuir, 2005, 21 (2): 666- 673
doi: 10.1021/la0481288
81 WANG F, YANG L, WANG L, et al. Maximum spread of droplet impacting onto solid surfaces with different wettabilities: adopting a rim lamella shape [J]. Langmuir 2019, 35(8): 3204-3214.
82 ATTANE P, GIRARD F, MORIN V An energy balance approach of ́ the dynamics of drop impact on a solid surface[J]. Physics of Fluids, 2007, 19 (1): 012101
doi: 10.1063/1.2408495
83 KIM H Y, CHUN J H The recoiling of liquid droplets upon collision with solid surfaces[J]. Physics of Fluids, 2001, 13 (3): 643- 659
doi: 10.1063/1.1344183
84 BECHTEL S E, BOGY D, TALKE F E Impact of a liquid drop against a flat surface[J]. IBM Journal of Resaerch and Development, 1981, 25 (6): 963- 971
doi: 10.1147/rd.256.0963
85 DELPLANQUE J P, RANGEL R H An improved model for droplet solidification on a flat surface[J]. Journal of Materials Science, 1997, 32 (6): 1519- 1530
doi: 10.1023/A:1018522521531
86 CLANET C, BÉGUIN C, RICHARD D, et al Maximal deformation of an impacting drop[J]. Journal of Fluid Mechanics, 2004, 517: 199- 208
doi: 10.1017/S0022112004000904
87 STOW C D, HADFIELD M G An experimental investigation of fluid-flow resulting from the impact of a water drop with an unyielding dry surface[J]. Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences, 1981, 373 (1755): 419- 441
88 RIBOUX G, GORDILLO J M Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing[J]. Physical Review Letters, 2014, 113 (2): 024507
doi: 10.1103/PhysRevLett.113.024507
89 MOULSON J B T, GREEN S I Effect of ambient air on liquid jet impingement on a moving substrate[J]. Physics of Fluids, 2013, 25 (10): 102106
doi: 10.1063/1.4823726
90 詹海洋. 液滴撞击超疏水表面的非对称动力学特性研究[D]. 大连: 大连理工大学, 2019: 19-22.
ZHAN Hai-yang. Study on asymmetric dynamics of droplets impacting on superhydrophobic surfaces [D]. Dalian: Dalian University of Technology, 2019: 19-22.
91 LIU X, ZHANG X, MIN J Maximum spreading of droplets impacting spherical surfaces[J]. Physics of Fluids, 2019, 31 (9): 092102
doi: 10.1063/1.5117278
92 BARTOLO D, JOSSERAND C, BONN D Retraction dynamics of aqueous drops upon impact on non-wetting surfaces[J]. Journal of Fluid Mechanics, 2005, 545 (1): 329- 338
93 ROISMA I V, TROPEA C Impact of a drop onto a wetted wall: description of crown formation and propagation[J]. Journal of Fluid Mechanics, 2002, 472: 373- 397
doi: 10.1017/S0022112002002434
94 YARIN A L, WESS D A Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity[J]. Journal of Fluid Mechanics, 1995, 283 (1): 141- 173
95 崔守鑫, 胡海泉, 肖效光, 等 分子动力学模拟基本原理和主要技术[J]. 聊城大学学报: 自然科学版, 2005, 18 (1): 31- 34
CUI Shou-xin, HU Hai-quan, XIAO Xiao-guang, et al The basic principles and methods of mplecuar dynamics simulation[J]. Journal of Liaocheng University: Natural Science, 2005, 18 (1): 31- 34
96 张嫚嫚. 气液两相流界面追踪方法的数值研究[D]. 天津: 河北工业大学, 2019: 4-11.
Zhang Man-man. Numerical study on the interface tracking method of gas-liquid two-phase flow [D]. Tianjin: Hebei University of Technology, 2019: 4-11.
97 LIANG G, GUO Y, SHEN S Analysis of liquid sheet and jet flow mechanism after droplet impinging onto liquid film[J]. Acta Physica Sinica Chinese Edition, 2013, 62 (2): 024705
doi: 10.7498/aps.62.024705
98 赵可, 佘阳梓, 蒋彦龙, 等 液氮滴撞击壁面相变行为的数值研究[J]. 物理学报, 2019, 68 (24): 244401
ZHAO Ke, SHE Yang-zi, JIANG Yan-long, et al Numerical study on phase change behavior of liquid nitrogen droplets impinging on solid surface[J]. Acta Physica Sinica Chinese Edition, 2019, 68 (24): 244401
doi: 10.7498/aps.68.20190945
99 FANG T H, CHANG W J, LIN S H Effects of temperature and velocity of droplet ejection process of simulated nanojets onto a moving plate’s surface[J]. Applied Surface Science, 2006, 253 (3): 1649- 1654
doi: 10.1016/j.apsusc.2006.02.062
100 ABASCALA J L F, VEGA C A general purpose model for the condensed phases of water: TIP4P/2005[J]. The Journal of Chemical Physics, 2005, 123 (23): 234505
doi: 10.1063/1.2121687
101 RITOS K, DONGARI N, BORG M K, et al Dynamics of nanoscale droplets on moving surfaces[J]. Langmuir, 2013, 29 (23): 6936- 6943
doi: 10.1021/la401131x
102 RITOS K, DONGARI N, ZHANG Y, et al. Dynamic wetting on moving surfaces: a molecular dynamics study [C]// Proceedings of the ASME 2012 10th International Conference on Nanochannels Microchannels and Minichannels. Puerto Rico: [s. n.], 2012: 73179.
103 HEINZ H, VAIA R A , FARMER B L, et al. Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12-6 and 9-6 Lennard-Jones potentials[J]. The Journal of Physical Chemistry C, 2008, 112 (44): 17281- 17290
doi: 10.1021/jp801931d
104 ZHANG H, LING P, XIE X Molecular dynamics simulation on behaviors of water nanodroplets impinging on moving surfaces[J]. Nanomaterials, 2022, 12 (2): 247
doi: 10.3390/nano12020247
105 HOU J, GONG J, WU X, et al Numerical study on impacting-freezing process of the droplet on a lateral moving cold super hydrophobic surface[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122044
doi: 10.1016/j.ijheatmasstransfer.2021.122044
106 YAO Y, LI C, ZHANG H, et al Modelling the impact, spreading and freezing of a water droplet on horizontal and inclined super hydrophobic cooled surfaces[J]. Applied Surface Science, 2017, 419: 52- 62
doi: 10.1016/j.apsusc.2017.04.085
107 ZHANG X, LIU X, WU X, et al Impacting-freezing dynamics of a supercooled water droplet on a cold surface: rebound and adhesion[J]. International Journal of Heat and Mass Transfer, 2020, 158: 119997
doi: 10.1016/j.ijheatmasstransfer.2020.119997
108 RAMAN K A Normal and oblique droplet impingement dynamics on moving dry walls[J]. Physical Review, 2019, 99 (5): 053108
109 ZHAN H, LU C, LIU C, et al Horizontal motion of a super hydrophobic substrate affects the drop bouncing dynamics[J]. Physical Review Letters, 2021, 126: 234503
doi: 10.1103/PhysRevLett.126.234503
110 LIANG G, CHEN L, WANG T, et al Parametric Effects on interface evolution and heat transfer in droplet impact on flowing liquid film[J]. Industrial and Engineering Chemistry Research, 2020, 59: 379- 388
doi: 10.1021/acs.iecr.9b04717
111 LIANG G, CHEN L, CHEN Y, et al Interfacial phenomena and heat transfer associated with multi-droplet impact on flowing liquid film[J]. Numerical Heat and Transfer Applications, 2020, 77 (1): 80- 89
doi: 10.1080/10407782.2019.1678325
112 LI J, ZHANG H, LIU Q Characteristics of secondary droplets produced by a single drop impacting on a static liquid film[J]. International Journal of Multiphase Flow, 2019, 119: 42- 55
doi: 10.1016/j.ijmultiphaseflow.2019.06.015
113 WANG Y, WANG X, WANG T, et al Asymmetric heat transfer characteristics of a double droplet impact on a moving liquid film[J]. International Journal of Heat and Mass Transfer, 2018, 126: 649- 659
doi: 10.1016/j.ijheatmasstransfer.2018.05.161
114 XIE Z, HEWITT G F, PAVLIDIS D, et al Numerical study of three-dimensional droplet impact on a flowing liquid film in annular two-phase flow[J]. Chemical Engineering Science, 2017, 166: 303- 312
doi: 10.1016/j.ces.2017.04.015
115 HE X, CHEN S, ZHANG R A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh Taylor instability[J]. Journal of Computational Physics, 1999, 152 (2): 642- 663
doi: 10.1006/jcph.1999.6257
116 LEE T, LIN C L A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio[J]. Journal of Computational Physics, 2005, 206 (1): 16- 47
doi: 10.1016/j.jcp.2004.12.001
117 RAMAN K A, JAIMAN R K, LEE T S, et al On the dynamics of crown structure in simultaneous two droplets impact onto stationary and moving liquid film[J]. Computers and Fluids, 2015, 107: 285- 300
doi: 10.1016/j.compfluid.2014.11.007
118 LIU C, SHEN M, WU J Investigation of a single droplet impact onto a liquid film with given horizontal velocity[J]. European Journal of Mechanics/B Fluids, 2018, 67: 269- 279
doi: 10.1016/j.euromechflu.2017.09.012
[1] 王开珉,张玉杰,康培森,刘宏升,刘晓华. 液滴撞击加热亲水管壁后的反弹和中心射流[J]. 浙江大学学报(工学版), 2022, 56(6): 1191-1198.