Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (8): 1644-1654    DOI: 10.3785/j.issn.1008-973X.2023.08.017
机械工程、能源工程     
车辆电磁馈能式动力吸振器设计
祝恒佳1,2(),田思远1,2,李双宝3,张威1,2,*()
1. 中国民航大学 航空工程学院,天津 300300
2. 中国民航航空地面特种设备研究基地,天津 300300
3. 中国民航大学 科技创新研究院,天津 300300
Design on electromagnetic energy regenerative dynamic vibration absorber for vehicles
Heng-jia ZHU1,2(),Si-yuan TIAN1,2,Shuang-bao LI3,Wei ZHANG1,2,*()
1. College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
2. Aviation Special Ground Equipment Research Base, CAAC, Tianjin 300300, China
3. Research Institute of Science and Technology, Civil Aviation University of China, Tianjin 300300, China
 全文: PDF(3816 KB)   HTML
摘要:

考虑线圈质量、电感、电阻以及机械振动系统与电磁式能量回收装置之间耦合作用,建立装有簧上电磁馈能式动力吸振器(EMER-DVA)的四分之一车辆动力学模型. 基于动力吸振原理及电磁馈能系统动刚度特性获得EMER-DVA参数匹配设计. 对比分析传统式动力吸振器(DVA)、EMER-DVA和无DVA车辆的车身振动加速度、悬架动挠度及输出功率的幅频特性,以及在正弦位移、随机位移激励工况下EMER-DVA和无DVA车辆的时域振动特性和振动能量回收性能. 结果表明,EMER-DVA使车身振动加速度、悬架动挠度振动传递率在悬架固有频率处分别降低17.8%和8.7%. 在C级随机不平路面、不同车速下,车身振动加速度、悬架动挠度均值降低3.2%、2.7%,输出功率、EMER-DVA挠度均值分别为0.98 W、11.8 mm;在D级随机不平路面下,相应参数分别为4.5%、3.1%、2.8 W、21.3 mm. 可以看出,EMER-DVA在提高车辆行驶平顺性的同时可以有效回收振动能量.开展EMER-DVA台架振动试验,试验结果与数值计算结果较吻合,验证了本研究EMER-DVA动力学模型的准确性.

关键词: 动力吸振器振动能量回收多场耦合车辆动力学平顺性    
Abstract:

A quarter vehicle dynamic model with electromagnetic energy regenerative dynamic vibration absorber (EMER-DVA) on the sprung mass was established, considering the coil mass, inductance, resistance, and coupling effects between the mechanical vibrating system and the electromagnetic energy recovery device. The parameter matching design for EMER-DVA was obtained based on the dynamic vibration absorber (DVA) principle and dynamical stiffness characteristics of the electromagnetic energy regenerative system. The amplitude-frequency behaviors in terms of body acceleration, suspension deflection and output power of the vehicles with DVA, EMER-DVA and non-DVA were compared in frequency domain. The time-domain vibration and energy recovery performances of the vehicles with EMER-DVA and non-DVA were analyzed under sinusoidal and random road displacement excitation conditions. Results show that, by comparing with the vehicle with non-DVA, EMER-DVA could reduce the vehicle body vibration acceleration and suspension dynamic deflection by 17.8% and 8.7%, respectively, at the natural frequency of the sprung mass. And the mean values of the above responses were decreased by 3.2% and 2.7% at different velocities, respectively, under the C-class random road condition. In addition, the mean values of output power and EMER-DVA deflection were 0.98 W and 11.8 mm, respectively. These values were 4.5%, 3.1%, 2.8 W and 21.3 mm, respectively, under the D-class random road condition. It indicates that the EMER-DVA may effectively recover the vibration energy while improving the vehicle ride comfort. Bench test of the EMER-DVA was conducted, and the corresponding experimental results agreed well with that of the numerical method, which validated the proposed dynamical model of the EMER-DVA.

Key words: dynamic vibration absorber    vibration energy recovery    multifield coupling    vehicle system dynamics    ride comfort
收稿日期: 2022-09-26 出版日期: 2023-08-31
CLC:  TH 113  
基金资助: 国家自然科学基金青年科学基金资助项目(12002367);国家自然科学基金民航联合研究基金重点支持项目(U2033208);国家自然科学基金资助项目(12172376)
通讯作者: 张威     E-mail: hjzhu@cauc.edu.cn;weizhang@cauc.edu.cn
作者简介: 祝恒佳(1987—),男,副教授,从事车辆动力学、民航特种装备与作业研究. orcid.org/0000-0002-7736-9653.E-mail: hjzhu@cauc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
祝恒佳
田思远
李双宝
张威

引用本文:

祝恒佳,田思远,李双宝,张威. 车辆电磁馈能式动力吸振器设计[J]. 浙江大学学报(工学版), 2023, 57(8): 1644-1654.

Heng-jia ZHU,Si-yuan TIAN,Shuang-bao LI,Wei ZHANG. Design on electromagnetic energy regenerative dynamic vibration absorber for vehicles. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1644-1654.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.08.017        https://www.zjujournals.com/eng/CN/Y2023/V57/I8/1644

图 1  簧上EMER-DVA的1/4车辆动力学模型
图 2  感应线圈剖面图
变量 物理含义 数值 变量 物理含义 数值
m1 /kg 簧下质量 40 Z 电路电阻 100
m2 /kg 簧上质量 380 Li /H 线圈电感 0.017
k1 /(N·m?1) 轮胎刚度系数 180000 N /圈 线圈圈数 6000
k2 /(N·m?1) 悬架刚度系数 20000 BR /T 相对磁感应强度 0.02
c1 / (N·s·m?1) 轮胎阻尼系数 300 r /m 线圈导线半径 0.001
c2 /(N·s·m?1) 悬架阻尼系数 1300 Rc /m 线圈平均半径 0.16
M1 /kg 磁块质量 1 h /m 线圈高度 0.32
Ri 线圈内阻 5 c /m 线圈径向厚度 0.02
表 1  机械电磁耦合动力学模型参数
图 3  传统式DVA车辆系统振动响应相对于谐波位移输入的幅频特性
图 4  EMER-DVA电磁系统动态力学特性
变量 物理含义 数值
M2 /kg 线圈质量 20
k3/(N·m?1 EMER-DVA刚度系数 700
c3/(N·s·m?1 EMER-DVA阻尼系数 0
表 2  EMER-DVA模型参数
图 5  EMER-DVA车辆系统振动响应相对于谐波位移输入的幅频特性
图 6  EMER-DVA 车辆系统输出功率相对于谐波位移输入的幅频特性
图 7  总体耗散功率相对于谐波位移输入的幅频特性
图 8  输出功率与潜在可回收功率相对于谐波位移输入的幅频特性对比
图 9  EMER-DVA车辆系统振动时域特性
图 10  总体耗散功率时域特性
模型 RMS( $ {\ddot x_2} $)/m·s?2 RMS( $ {f_{\text{d}}} $)/mm RMS( $ {P_{{\text{da}}}} $)/W
1/4车模型 0.273 4.7 1.983
EMER-DVA 0. 237 4.2 1.606
表 3  车辆振动响应RMS
图 11  C级随机路面位移激励
图 12  D级随机路面位移激励
图 13  EMER-DVA车辆在不同车速、路况下的动态响应
模型 路面
等级
$\overline{{\rm{RMS}}}( {\ddot x_2}) $/
(m·s?2
$ \overline{{\rm{RMS}}}({f_{\text{d}}}) $/
mm
$\overline{{\rm{RMS}}}( P) $/
W
$\overline{{\rm{RMS}}}( {f_{{\text{dd}}}}) $/
mm
1/4车模型 C 0.95 11.4
D 1.76 20.1
EMER-DVA C 0.92 11.1 0.98 11.8
D 1.68 19.5 2.8 21.3
表 4  EMER-DVA车辆系统动态响应均值
图 14  簧上EMER-DVA的1/4车振动台架试验
变量/单位 物理含义 数值
m1 /kg 簧下质量 2.4
m2 /kg 簧上质量 2.5
k1 /(N·m?1 轮胎刚度系数 1000
k2 /(N·m?1 悬架刚度系数 400
M1 /kg 磁块质量 0.05
M2 /kg 线圈质量 0.5
k3 /(N·m?1 EMER-DVA刚度系数 80
Ri 线圈电阻 5
Z 电路电阻 100
BR /T 相对磁感应强度 0.02
表 5  EMER-DVA车辆台架试验系统参数
图 15  EMER-DVA车辆振动台架试验输入与动态响应
RMS( $ {\ddot x_2} $)/(m·s?2 RMS( $ u $)/V
理论模型 0.393 1.152
台架试验 0.406 1.232
表 6  理论模型与台架试验动态响应RMS
1 郎君, 申永军, 杨绍普 一种半主动动力吸振器参数优化及性能比较[J]. 振动与冲击, 2019, 38 (17): 172- 177
LANG Jun, SHEN Yong-jun, YANG Shao-pu Parametric optimization and performance comparison for 2 semi-active Voigt DVAs[J]. Journal of Vibration and Shock, 2019, 38 (17): 172- 177
doi: 10.13465/j.cnki.jvs.2019.17.023
2 潘公宇, 于海浪 基于遗传算法的悬架动力吸振器优化[J]. 制造业自动化, 2014, 36 (20): 82- 92
PAN Gong-yu, YU Hai-lang Optimization of suspension dynamic absorbers based on genetic algorithm[J]. Manufacturing Automation, 2014, 36 (20): 82- 92
doi: 10.3969/j.issn.1009-0134.2014.20.022
3 周子博, 申永军, 杨绍普 含放大机构的三要素型动力吸振器的H∞优化 [J]. 振动与冲击, 2022, 41 (5): 158- 165
ZHOU Zi-bo, SHEN Yong-jun, YANG Shao-pu H∞ optimization of 3-factor types dynamic vibration absorber with amplification mechanism [J]. Journal of Vibration and Shock, 2022, 41 (5): 158- 165
4 MEHMET A Fuzzy logic control of vibrations due to interaction one DOF vehicle suspension and flexible structure with tuned mass damper[J]. Journal of Smart Systems Research, 2020, 1 (1): 1- 10
5 SHAO X X, NAGHDY F, DU H P Reliable fuzzy H∞ control for active suspension of in-wheel motor driven electric vehicles with dynamic damping [J]. Mechanical Systems and Signal Processing, 2017, 87: 365- 383
doi: 10.1016/j.ymssp.2016.10.032
6 郭增伟, 葛耀君, 卢安平 竖弯涡振控制的调谐质量阻尼器TMD参数优化设计[J]. 浙江大学学报: 工学版, 2012, 46 (1): 8- 13
GUO Zeng-wei, GE Yao-jun, LU An-ping Parameter optimization of TMD for vortex-induced vibration control[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (1): 8- 13
7 王梁坤, 施卫星, 张全伍, 等 自适应多重TMD在大跨楼板结构减振中的应用[J]. 振动、测试与诊断, 2020, 40 (3): 578- 584
WANG Liang-kun, SHI Wei-xing, ZHANG Quan-wu, et al Adaptive-passive multiple tuned mass damper on large-span floor structure[J]. Journal of Vibration, Measurement and Diagnosis, 2020, 40 (3): 578- 584
doi: 10.16450/j.cnki.issn.1004-6801.2020.03.022
8 刘国政, 史文库, 郑煜圣 动力吸振器在驱动桥减振降噪上的应用[J]. 振动与冲击, 2018, 37 (14): 202- 207
LIU Guo-zheng, SHI Wen-ku, ZHENG Yu-sheng Application of dynamic vibration absorbers in vibration and noise reduction of drive axles[J]. Journal of Vibration and Shock, 2018, 37 (14): 202- 207
doi: 10.13465/j.cnki.jvs.2018.14.028
9 刘浩, 周鋐 动力吸振器在传动轴扭振控制上的应用[J]. 机电一体化, 2015, 21 (6): 36- 40
LIU Hao, ZHOU Hong Application of turned mass damper or torsional vibration of transmission shaft[J]. Mechatronics, 2015, 21 (6): 36- 40
10 周涛, 陈晓梅, 张永亮 动力总成动力吸振器特性研究[J]. 内燃机, 2020, 1 (4): 34- 37
ZHOU Tao, CHEN Xiao-mei, ZHANG Yong-liang Research on tuned mass damper in power assembly[J]. Internal Combustion Engines, 2020, 1 (4): 34- 37
doi: 10.3969/j.issn.1000-6494.2020.01.009
11 ZHU Y G, BIAN X L, SU L L, et al Ride comfort improvement with preview control semi-active suspension system based on supervised deep learning[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2021, 5 (1): 37- 47
12 FAN D L, DAI P S, YANG M L, et al Research on maglev vibration isolation technology for vehicle road noise control[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2022, 6 (3): 233- 245
13 HROVAT D Optimal active suspension structures for quarter-car vehicle models[J]. Automatica, 1990, 26 (5): 845- 860
doi: 10.1016/0005-1098(90)90002-Y
14 杨晓峰, 沈钰杰, 陈龙 基于动力吸振理论的车辆ISD悬架设计与性能分析[J]. 汽车工程, 2014, 36 (10): 1262- 1277
YANG Xiao-feng, SHEN Yu-jie, CHEN Long Design and performances analysis of vehicle ISD suspension based on dynamic vibration absorber theory[J]. Automotive Engineering, 2014, 36 (10): 1262- 1277
doi: 10.19562/j.chinasae.qcgc.2014.10.021
15 葛正, 王维锐 车辆主动惯容式动力吸振悬架系统研究[J]. 振动与冲击, 2017, 36 (1): 167- 174
GE Zheng, WANG Wei-rui Vehicle active ISD-DVA suspension system[J]. Journal of Vibration and Shock, 2017, 36 (1): 167- 174
doi: 10.13465/j.cnki.jvs.2017.01.025
16 FU T. A novel kind of proportional electromagnetic dynamic vibration absorber [C]// SAE World Congress Experience 2019. Detroit: SAE, 2019.
17 王维锐, 吴参, 潘双夏, 等 车辆半主动悬架负刚度控制策略研究[J]. 浙江大学学报: 工学版, 2009, 43 (6): 1129- 1133
WANG Wei-rui, WU Can, PAN Shuang-xia, et al Negative stiffness-based control strategy of vehicle semi-active suspension[J]. Journal of Zhejiang University: Engineering Science, 2009, 43 (6): 1129- 1133
18 ZHANG K D, WU J L, ZHANG Y Q. Semi-active control of ISD In-Wheel motors suspension with dynamic vibration absorber [C]// SAE World Congress Experience 2022. Detroit: SAE, 2022.
19 ELVIN N G, ELVIN A A An experimentally validated electromagnetic energy harvester[J]. Journal of Sound and Vibration, 2011, 330 (10): 2314- 2324
doi: 10.1016/j.jsv.2010.11.024
20 KECIK K Simultaneous vibration mitigation and energy harvesting from a pendulum-type absorber[J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 92: 105479
doi: 10.1016/j.cnsns.2020.105479
21 ZUO L, ZHANG P S Energy harvesting, ride comfort, and road handling of regenerative vehicle suspensions[J]. ASME Journal of Vibration and Acoustics, 2013, 135 (1): 48- 65
22 GUO S J, LIU Y L, XU L Performance evaluation and parameter sensitivity of energy-harvesting shock absorbers on different vehicles[J]. Vehicle System Dynamics, 2016, 54 (7): 918- 942
doi: 10.1080/00423114.2016.1174276
23 白世鹏, 侯之超 动力吸振器对车辆垂向振动能量及悬架性能的影响[J]. 振动与冲击, 2020, 39 (22): 169- 174
BAI Shi-peng, HOU Zhi-chao Impact of dynamic vibration absorbers on vehicle vertical vibration energy and suspension performances[J]. Journal of Vibration and Shock, 2020, 39 (22): 169- 174
doi: 10.13465/j.cnki.jvs.2020.22.023
24 SMITH F L. Radiotron Designer’s Handbook 4 Edition [M]. Sydney: Wireles, 1952.
25 白世鹏, 侯之超 簧下调谐系统回收车辆轮胎的垂向振动能量[J]. 清华大学学报: 自然科学版, 2018, 58 (11): 1013- 1020
BAI Shi-peng, HOU Zhi-chao Vehicle tire vertical vibration energy harvesting using unsprung tuned mass damper[J]. Journal of Tsinghua University: Science and Technology, 2018, 58 (11): 1013- 1020
26 伍良生, 顾仲权, 张阿舟 阻尼动力吸振器减振问题的进一步研究[J]. 振动与冲击, 1994, 13 (1): 1- 7
WU Liang-sheng, GU Zhong-quan, ZHANG A-zhou A further investigation of using dynamic vibration absorber to reduce vibration[J]. Journal of Vibration and Shock, 1994, 13 (1): 1- 7
doi: 10.13465/j.cnki.jvs.1994.01.001
27 ANDERSSON N, ABRAHAMSSOPN T. Comparison of stimuli for nonlinear system response classification [J], SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2020, 4(3): 197-219.
28 ZHU H J, LIU Y H, TIAN S Y, et al. Studies on dynamic stiffness and damping of the vibration energy recovery system [C]// SAE World Congress Experience 2022. Detroit: SAE, 2022.
29 WANG H, LV X, ZHU H J, et al Study on vibration characteristics of the towbarless aircraft taxiing system[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2022, 2 (6): 175- 188
[1] 余思臻,漆天奇,王桥,程勇刚,周伟,常晓林. 混凝土热-水-化-干湿应变多场耦合模型[J]. 浙江大学学报(工学版), 2023, 57(8): 1585-1596.
[2] 黄康桥,赵程,周伟,刘杏红,马刚. 基于多场耦合模型的混凝土冻融三维细观研究[J]. 浙江大学学报(工学版), 2021, 55(1): 62-70.
[3] 黄腾逸,周瑾,徐岩,孟凡许. 基于多场耦合分析的磁流变阻尼器建模与结构参数影响[J]. 浙江大学学报(工学版), 2020, 54(10): 2001-2008.
[4] 夏能, 颉俊, 张承谦, 赵朋, 傅建中. 抗磁性物质的磁悬浮仿真及密度测量[J]. 浙江大学学报(工学版), 2018, 52(3): 473-478.
[5] 刘刚, 靳立强, 王熠. 乘用车稳定性自抗扰控制策略[J]. 浙江大学学报(工学版), 2016, 50(12): 2289-2296.
[6] 魏春雨, 周晓军, 魏燕定, 唐昉. 基于Vortex的6自由度平台洗出运动仿真[J]. J4, 2012, 46(8): 1390-1396.